[1]徐丽萍,檀根甲. 油茶主要病害流行与生态条件的关系和生态调控技术[J]. 安徽农业大学学报,2015,42(2):272-275.
[2]宋光桃. 油茶主要病害检测和生物控制技术研究[D]. 长沙:中南林业科技大学,2012:73-82.
[3]尚笑男,刘君昂,冯福山,等. 油茶内生拮抗细菌的筛选、鉴定及防效[J]. 中国生物防治学报,2021,37(3):575-583.
[4]孙科,耿凤英,于秋菊,等. 牛蒡根内生固氮菌分离、鉴定及培养条件优化的研究[J]. 中国酿造,2021,40(11):133-137.
[5]杨茉,高婷,李滟璟,等. 辣椒根际促生菌的分离筛选及抗病促生特性研究[J]. 生物技术通报,2020,36(5):104-109.
[6]许世洋,范雨轩,汪学苗,等. 辣椒镰孢根腐病防病促生细菌的筛选及其效应[J]. 微生物学报,2022,62(7):2735-2750.
[7]郗蓓蓓,叶建仁. 高效钾细菌的筛选鉴定及对植物的促生长效应[J]. 河南农业科学,2020,49(2):81-88.
[8]李正风,朱杰,唐丽,等. 烟草秸秆中产纤维素酶细菌筛选、鉴定及酶活测定[J]. 西南农业学报,2020,33(3):645-650.
[9]张晓瑞,刘晓晖,付博,等. 烟草中淀粉降解菌的筛选、鉴定及发酵工艺优化[J]. 食品与机械,2021,37(2):34-41.
[10]许佳露,张平,李美芳,等. 产铁载体菌株的分离、培养条件优化及初步应用[J]. 微生物学通报,2022,49(3):1004-1016.
[11]陈越,李虎林,朱诗苗,等. 产吲哚乙酸(IAA)促生菌的分离鉴定及对烟草种子萌发和幼苗生长发育的影响[J]. 作物杂志,2020(2):176-181.
[12]Ruiz-García C,Béjar V,Martínez-Checa F,et al. Bacillus velezensis sp.nov.,a surfactant-producing bacterium isolated from the river Vélez in Málaga,southern Spain[J]. International Journal of Systematic and Evolutionary Microbiology,2005,55(Pt 1):191-195.
[13]Chen L,Shi H,Heng J Y,et al. Antimicrobial,plant growth-promoting and genomic properties of the peanut endophyte Bacillus velezensis LDO2[J]. Microbiological Research,2019,218:41-48.
[14]王若琳,徐伟芳,王飞,等. 桑树内生拮抗菌的分离鉴定及其对桑断枝烂叶病的生防初探[J]. 微生物学报,2019,59(11):2130-2143.
[15]Kang X X,Zhang W L,Cai X C,et al. Bacillus velezensis CC09:a potential ‘vaccine’ for controlling wheat diseases[J]. Molecular Plant-Microbe Interactions,2018,31(6):623-632.
[16]Li F Z,Zeng Y J,Zong M H,et al. Bioprospecting of a novel endophytic Bacillus velezensis FZ06 from leaves of Camellia assamica:production of three groups of lipopeptides and the inhibition against food spoilage microorganisms[J]. Journal of Biotechnology,2020,323:42-53.
[17]Khan M S,Gao J L,Chen X Q,et al. The endophytic bacteria Bacillus velezensis lle-9,isolated from Lilium leucanthum,harbors antifungal activity and plant growth-promoting effects[J]. Journal of Microbiology and Biotechnology,2020,30(5):668-680.
[18]Torres M,Llamas I,Torres B,et al. Growth promotion on horticultural crops and antifungal activity of Bacillus velezensis XT1[J]. Applied Soil Ecology,2020,150:103453.
[19]Myo E M,Liu B H,Ma J J,et al. Evaluation of Bacillus velezensis NKG-2 for bio-control activities against fungal diseases and potential plant growth promotion[J]. Biological Control,2019,134:23-31.
[20]Fan B,Wang C,Song X F,et al. Bacillus velezensis FZB42 in 2018:the gram-positive model strain for plant growth promotion and biocontrol[J]. Frontiers in Microbiology,2018,9:2491.
[21]Asaturova A M,Bugaeva L N,Homyak A I,et al. Bacillus velezensis strains for protecting cucumber plants from root-knot nematode Meloidogyne incognita in a greenhouse[J]. Plants,2022,11(3):275.
[22]Li S Y,Ma J P,Li S Y,et al. Comparative transcriptome analysis unravels the response mechanisms of Fusarium oxysporum f. sp. cubense to a biocontrol agent,Pseudomonas aeruginosa gxun-2[J]. International Journal of Molecular Sciences,2022,23(23):15432.
[23]Won S J,Moon J H,Ajuna H B,et al. Biological control of leaf blight disease caused by Pestalotiopsis maculans and growth promotion of Quercus acutissima carruth container seedlings using Bacillus velezensis CE 100[J]. International Journal of MolecμLar Sciences,2021,22(20):11296.
[24]Hamaoka K,Aoki Y,Suzuki S. Isolation and characterization of endophyte Bacillus velezensis KOF112 from grapevine shoot xylem as biological control agent for fungal diseases[J]. Plants,2021,10(9):1815.
[25]Baptista J P,Teixeira G M,de Jesus M L A,et al. Antifungal activity and genomic characterization of the biocontrol agent Bacillus velezensis CMRP 4489[J]. Scientific Reports,2022,12:17401.
[26]Wang C Q,Zhao D Y,Qi G Z,et al. Effects of Bacillus velezensis FKM10 for promoting the growth of Malus hupehensis Rehd. and inhibiting Fusarium verticillioides[J]. Frontiers in Microbiology,2020,10:2889.
[27]Li S J,Xu X G,Zhao T Y,et al. Screening of Bacillus velezensis E2 and the inhibitory effect of its antifungal substances on Aspergillus flavus[J]. Foods,2022,11(2):140.
[28]Park G,Nam J,Kim J,et al. Structure and mechanism of surfactin peptide from Bacillus velezensis antagonistic to fungi plant pathogens[J]. Bulletin of the Korean Chemical Society,2019,40(7):704-709.
[29]Zhao H L,Liu K,Fan Y Z,et al. Cell-free supernatant of Bacillus velezensis suppresses mycelial growth and reduces virulence of Botrytis cinerea by inducing oxidative stress[J]. Frontiers in Microbiology,2022,13:980022.
[30]Feng B Z,Chen D D,Jin R X,et al. Bioactivities evaluation of an endophytic bacterial strain Bacillus velezensis JRX-YG39 inhabiting wild grape[J]. BMC Microbiology,2022,22(1):170.
[31]Rungsirivanich P,Parlindungan E,OConnor P M,et al. Simultaneous production of multiple antimicrobial compounds by Bacillus velezensis ML122-2 isolated from Assam tea leaf [Camellia sinensi var.assamica (J.W.Mast.) Kitam.][J]. Frontiers in Microbiology,2021,12:789362.
[32]Chen M C,Wang J P,Liu B,et al. Biocontrol of tomato bacterial wilt by the new strain Bacillus velezensis FJAT-46737 and its lipopeptides[J]. BMC Microbiology,2020,20(1):160.
[33]Chen Z,Zhao L,Chen W Q,et al. Isolation and evaluation of Bacillus velezensis ZW-10 as a potential biological control agent against Magnaporthe oryzae[J]. Biotechnology & Biotechnological Equipment,2020,34(1):714-724.
[34]Nifakos K,Tsalgatidou P C,Thomloudi E E,et al. Genomic analysis and secondary metabolites production of the endophytic Bacillus velezensis Bvell:a biocontrol agent against Botrytis cinerea causing bunch rot in post-harvest table grapes[J]. Plants,2021,10(8):1716.
[35]杨婉艺,姜毅,汤静,等. 无花果采后炭疽病原菌鉴定及贝莱斯芽孢杆菌防治效果[J]. 食品科学,2023,44(15):204-211.
[36]冯江鹏,邱莉萍,梁秀燕,等. 草莓胶孢炭疽菌拮抗细菌贝莱斯芽孢杆菌JK3的鉴定及其抗菌活性[J]. 浙江农业学报,2020,32(5):831-839.
[37]方园,彭勇政,廖长贵,等. 一株具有防病促生功能的贝莱斯芽孢杆菌SF327[J]. 微生物学报,2022,62(10):4071-4088.
[1]王奎萍,陈云,刘红霞,等.水稻纹枯病的生物防治[J].江苏农业科学,2013,41(05):110.
Wang Kuiping,et al.Biological control of rice sheath blight disease[J].Jiangsu Agricultural Sciences,2013,41(10):110.
[2]滕维超,刘少轩,刘新亮,等.不同种植模式对油茶成林土壤有机碳及养分特征的影响[J].江苏农业科学,2013,41(05):323.
Teng Weichao,et al.Influence of different planting modes on organic carbon and nutrient characteristics in soils of Camellia oleifera forest[J].Jiangsu Agricultural Sciences,2013,41(10):323.
[3]宋微,王磊,张虎,等.山木通叶斑病病原菌分离、鉴定与拮抗细菌的筛选[J].江苏农业科学,2015,43(12):172.
Song Wei,et al.Isolation and identification of leaf spot pathogen of Clematis finetiana and screening of its antagonistic bacteria[J].Jiangsu Agricultural Sciences,2015,43(10):172.
[4]黄霄,周登博,张锡炎,等.1株香蕉枯萎病菌拮抗菌鉴定及抑菌效果[J].江苏农业科学,2013,41(07):90.
Huang Xiao,et al.Identification and bacteriostatic effect of a single banana Fusarium oxysporum antagonistic bacteria[J].Jiangsu Agricultural Sciences,2013,41(10):90.
[5]王卿,林玲,张昕,等.西瓜枯萎病生防细菌的筛选及鉴定[J].江苏农业科学,2013,41(08):116.
Wang Qing,et al.Screening and identification of watermelon Fusarium wilt biocontrol bacteria[J].Jiangsu Agricultural Sciences,2013,41(10):116.
[6]周乃富,谭晓风,袁军.林下养鸡对油茶林地土壤以及植株养分的影响[J].江苏农业科学,2014,42(08):341.
Zhou Naifu,et al.Effects of feeding chicken under Camellia oleifera woods on nutrient of soil and plant[J].Jiangsu Agricultural Sciences,2014,42(10):341.
[7]王立博,张婷,王敬力,等.油茶内生真菌DNA提取及SRAP反应体系的建立[J].江苏农业科学,2013,41(12):37.
Wang Libo,et al.Extraction of DNA from Camellia oleifera endophytic fungi and establishment of SRAP reaction system[J].Jiangsu Agricultural Sciences,2013,41(10):37.
[8]王华,胡锦珍,胡冬南,等.不同肥料对油茶林土壤微生物及酶活性的影响[J].江苏农业科学,2016,44(06):461.
Wang Hua,et al.Effects of different fertilization treatments on soil microorganisms and enzyme activities in Camellia oleifera forest[J].Jiangsu Agricultural Sciences,2016,44(10):461.
[9]陆铮铮,蒋选利.烟草青枯病菌土壤拮抗细菌的筛选及鉴定[J].江苏农业科学,2014,42(06):99.
Lu Zhengzheng,et al.Screening and identification of antagonistic bacteria in soil against Ralstonia solancearum[J].Jiangsu Agricultural Sciences,2014,42(10):99.
[10]周德明,艾芹,周国英.12种植物对油茶炭疽病菌和软腐病菌的抑制活性[J].江苏农业科学,2015,43(06):121.
Zhou Deming,et al.Inhibitory activity of 12 kinds of plants to Camellia anthrax and soft rot pathogen[J].Jiangsu Agricultural Sciences,2015,43(10):121.