|本期目录/Table of Contents|

[1]桑梦科,刘君昂,周国英.油茶根际土壤拮抗菌分离鉴定及其对油茶炭疽病的防效[J].江苏农业科学,2024,52(10):145-153.
 Sang Mengke,et al.Isolation and identification of antagonistic bacteria in rhizosphere soil of Camellia oleifera and its control effect on anthracnose[J].Jiangsu Agricultural Sciences,2024,52(10):145-153.
点击复制

油茶根际土壤拮抗菌分离鉴定及其对油茶炭疽病的防效(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第10期
页码:
145-153
栏目:
植物保护
出版日期:
2024-05-20

文章信息/Info

Title:
Isolation and identification of antagonistic bacteria in rhizosphere soil of Camellia oleifera and its control effect on anthracnose
作者:
桑梦科刘君昂周国英
中南林业科技大学/南方人工林病虫害防控国家林草局重点实验室/森林有害生物防控湖南省重点实验室/经济林培育与保护教育部重点实验室,湖南长沙 410004
Author(s):
Sang Mengkeet al
关键词:
油茶拮抗细菌分离鉴定离体防效生物防治
Keywords:
-
分类号:
S763.744;S182
DOI:
-
文献标志码:
A
摘要:
油茶炭疽病是由多种真菌引起的主要危害油茶叶片和果实的病害,其发生严重时会影响油茶的产量。为从土壤中寻找对油茶炭疽病具有生防潜力的拮抗菌,通过稀释涂布平板法分离出可人工培养的微生物与指示菌平板对峙试验,经过初筛和复筛确定目标菌株。对目标菌株进行形态特征观察、生理生化鉴定及功能验证。利用盖玻片斜插法于显微镜下观察目标菌株对指示菌菌丝的影响,并进行抑菌谱试验。利用离体刺伤接种试验,验证目标菌株对油茶炭疽病发生的防治效果和治疗效果。通过16S rDNA基因扩增技术、gyrA基因扩增技术,对目标菌株进行分子鉴定。结果表明:从土壤中分离出可培养不同菌落形态的菌株 34 株,结合初筛、复筛,将菌株YFB-10-3-2确定为目标菌株。菌株YFB-10-3-2具有产生解淀粉酶、解纤维素酶、蛋白酶的能力和固氮功能,能使指示菌菌丝膨大、弯曲。进一步试验发现,目标菌株对10种病原菌的抑制率为46%~72%,表明该菌株具有抑菌广谱性。室内试验发现,该菌株对油茶炭疽病有68.11%的预防效果和28.60%的治疗效果,结合形态特征和生理生化试验,通过双基因分子鉴定,将菌株YFB-10-3-2鉴定为贝莱斯芽孢杆菌。综上,菌株YFB-10-3-2具有开发成为油茶炭疽病生防菌剂的巨大潜力。
Abstract:
-

参考文献/References:

[1]徐丽萍,檀根甲. 油茶主要病害流行与生态条件的关系和生态调控技术[J]. 安徽农业大学学报,2015,42(2):272-275.
[2]宋光桃. 油茶主要病害检测和生物控制技术研究[D]. 长沙:中南林业科技大学,2012:73-82.
[3]尚笑男,刘君昂,冯福山,等. 油茶内生拮抗细菌的筛选、鉴定及防效[J]. 中国生物防治学报,2021,37(3):575-583.
[4]孙科,耿凤英,于秋菊,等. 牛蒡根内生固氮菌分离、鉴定及培养条件优化的研究[J]. 中国酿造,2021,40(11):133-137.
[5]杨茉,高婷,李滟璟,等. 辣椒根际促生菌的分离筛选及抗病促生特性研究[J]. 生物技术通报,2020,36(5):104-109.
[6]许世洋,范雨轩,汪学苗,等. 辣椒镰孢根腐病防病促生细菌的筛选及其效应[J]. 微生物学报,2022,62(7):2735-2750.
[7]郗蓓蓓,叶建仁. 高效钾细菌的筛选鉴定及对植物的促生长效应[J]. 河南农业科学,2020,49(2):81-88.
[8]李正风,朱杰,唐丽,等. 烟草秸秆中产纤维素酶细菌筛选、鉴定及酶活测定[J]. 西南农业学报,2020,33(3):645-650.
[9]张晓瑞,刘晓晖,付博,等. 烟草中淀粉降解菌的筛选、鉴定及发酵工艺优化[J]. 食品与机械,2021,37(2):34-41.
[10]许佳露,张平,李美芳,等. 产铁载体菌株的分离、培养条件优化及初步应用[J]. 微生物学通报,2022,49(3):1004-1016.
[11]陈越,李虎林,朱诗苗,等. 产吲哚乙酸(IAA)促生菌的分离鉴定及对烟草种子萌发和幼苗生长发育的影响[J]. 作物杂志,2020(2):176-181.
[12]Ruiz-García C,Béjar V,Martínez-Checa F,et al. Bacillus velezensis sp.nov.,a surfactant-producing bacterium isolated from the river Vélez in Málaga,southern Spain[J]. International Journal of Systematic and Evolutionary Microbiology,2005,55(Pt 1):191-195.
[13]Chen L,Shi H,Heng J Y,et al. Antimicrobial,plant growth-promoting and genomic properties of the peanut endophyte Bacillus velezensis LDO2[J]. Microbiological Research,2019,218:41-48.
[14]王若琳,徐伟芳,王飞,等. 桑树内生拮抗菌的分离鉴定及其对桑断枝烂叶病的生防初探[J]. 微生物学报,2019,59(11):2130-2143.
[15]Kang X X,Zhang W L,Cai X C,et al. Bacillus velezensis CC09:a potential ‘vaccine’ for controlling wheat diseases[J]. Molecular Plant-Microbe Interactions,2018,31(6):623-632.
[16]Li F Z,Zeng Y J,Zong M H,et al. Bioprospecting of a novel endophytic Bacillus velezensis FZ06 from leaves of Camellia assamica:production of three groups of lipopeptides and the inhibition against food spoilage microorganisms[J]. Journal of Biotechnology,2020,323:42-53.
[17]Khan M S,Gao J L,Chen X Q,et al. The endophytic bacteria Bacillus velezensis lle-9,isolated from Lilium leucanthum,harbors antifungal activity and plant growth-promoting effects[J]. Journal of Microbiology and Biotechnology,2020,30(5):668-680.
[18]Torres M,Llamas I,Torres B,et al. Growth promotion on horticultural crops and antifungal activity of Bacillus velezensis XT1[J]. Applied Soil Ecology,2020,150:103453.
[19]Myo E M,Liu B H,Ma J J,et al. Evaluation of Bacillus velezensis NKG-2 for bio-control activities against fungal diseases and potential plant growth promotion[J]. Biological Control,2019,134:23-31.
[20]Fan B,Wang C,Song X F,et al. Bacillus velezensis FZB42 in 2018:the gram-positive model strain for plant growth promotion and biocontrol[J]. Frontiers in Microbiology,2018,9:2491.
[21]Asaturova A M,Bugaeva L N,Homyak A I,et al. Bacillus velezensis strains for protecting cucumber plants from root-knot nematode Meloidogyne incognita in a greenhouse[J]. Plants,2022,11(3):275.
[22]Li S Y,Ma J P,Li S Y,et al. Comparative transcriptome analysis unravels the response mechanisms of Fusarium oxysporum f. sp. cubense to a biocontrol agent,Pseudomonas aeruginosa gxun-2[J]. International Journal of Molecular Sciences,2022,23(23):15432.
[23]Won S J,Moon J H,Ajuna H B,et al. Biological control of leaf blight disease caused by Pestalotiopsis maculans and growth promotion of Quercus acutissima carruth container seedlings using Bacillus velezensis CE 100[J]. International Journal of MolecμLar Sciences,2021,22(20):11296.
[24]Hamaoka K,Aoki Y,Suzuki S. Isolation and characterization of endophyte Bacillus velezensis KOF112 from grapevine shoot xylem as biological control agent for fungal diseases[J]. Plants,2021,10(9):1815.
[25]Baptista J P,Teixeira G M,de Jesus M L A,et al. Antifungal activity and genomic characterization of the biocontrol agent Bacillus velezensis CMRP 4489[J]. Scientific Reports,2022,12:17401.
[26]Wang C Q,Zhao D Y,Qi G Z,et al. Effects of Bacillus velezensis FKM10 for promoting the growth of Malus hupehensis Rehd. and inhibiting Fusarium verticillioides[J]. Frontiers in Microbiology,2020,10:2889.
[27]Li S J,Xu X G,Zhao T Y,et al. Screening of Bacillus velezensis E2 and the inhibitory effect of its antifungal substances on Aspergillus flavus[J]. Foods,2022,11(2):140.
[28]Park G,Nam J,Kim J,et al. Structure and mechanism of surfactin peptide from Bacillus velezensis antagonistic to fungi plant pathogens[J]. Bulletin of the Korean Chemical Society,2019,40(7):704-709.
[29]Zhao H L,Liu K,Fan Y Z,et al. Cell-free supernatant of Bacillus velezensis suppresses mycelial growth and reduces virulence of Botrytis cinerea by inducing oxidative stress[J]. Frontiers in Microbiology,2022,13:980022.
[30]Feng B Z,Chen D D,Jin R X,et al. Bioactivities evaluation of an endophytic bacterial strain Bacillus velezensis JRX-YG39 inhabiting wild grape[J]. BMC Microbiology,2022,22(1):170.
[31]Rungsirivanich P,Parlindungan E,OConnor P M,et al. Simultaneous production of multiple antimicrobial compounds by Bacillus velezensis ML122-2 isolated from Assam tea leaf [Camellia sinensi var.assamica (J.W.Mast.) Kitam.][J]. Frontiers in Microbiology,2021,12:789362.
[32]Chen M C,Wang J P,Liu B,et al. Biocontrol of tomato bacterial wilt by the new strain Bacillus velezensis FJAT-46737 and its lipopeptides[J]. BMC Microbiology,2020,20(1):160.
[33]Chen Z,Zhao L,Chen W Q,et al. Isolation and evaluation of Bacillus velezensis ZW-10 as a potential biological control agent against Magnaporthe oryzae[J]. Biotechnology & Biotechnological Equipment,2020,34(1):714-724.
[34]Nifakos K,Tsalgatidou P C,Thomloudi E E,et al. Genomic analysis and secondary metabolites production of the endophytic Bacillus velezensis Bvell:a biocontrol agent against Botrytis cinerea causing bunch rot in post-harvest table grapes[J]. Plants,2021,10(8):1716.
[35]杨婉艺,姜毅,汤静,等. 无花果采后炭疽病原菌鉴定及贝莱斯芽孢杆菌防治效果[J]. 食品科学,2023,44(15):204-211.
[36]冯江鹏,邱莉萍,梁秀燕,等. 草莓胶孢炭疽菌拮抗细菌贝莱斯芽孢杆菌JK3的鉴定及其抗菌活性[J]. 浙江农业学报,2020,32(5):831-839.
[37]方园,彭勇政,廖长贵,等. 一株具有防病促生功能的贝莱斯芽孢杆菌SF327[J]. 微生物学报,2022,62(10):4071-4088.

相似文献/References:

[1]王奎萍,陈云,刘红霞,等.水稻纹枯病的生物防治[J].江苏农业科学,2013,41(05):110.
 Wang Kuiping,et al.Biological control of rice sheath blight disease[J].Jiangsu Agricultural Sciences,2013,41(10):110.
[2]滕维超,刘少轩,刘新亮,等.不同种植模式对油茶成林土壤有机碳及养分特征的影响[J].江苏农业科学,2013,41(05):323.
 Teng Weichao,et al.Influence of different planting modes on organic carbon and nutrient characteristics in soils of Camellia oleifera forest[J].Jiangsu Agricultural Sciences,2013,41(10):323.
[3]宋微,王磊,张虎,等.山木通叶斑病病原菌分离、鉴定与拮抗细菌的筛选[J].江苏农业科学,2015,43(12):172.
 Song Wei,et al.Isolation and identification of leaf spot pathogen of Clematis finetiana and screening of its antagonistic bacteria[J].Jiangsu Agricultural Sciences,2015,43(10):172.
[4]黄霄,周登博,张锡炎,等.1株香蕉枯萎病菌拮抗菌鉴定及抑菌效果[J].江苏农业科学,2013,41(07):90.
 Huang Xiao,et al.Identification and bacteriostatic effect of a single banana Fusarium oxysporum antagonistic bacteria[J].Jiangsu Agricultural Sciences,2013,41(10):90.
[5]王卿,林玲,张昕,等.西瓜枯萎病生防细菌的筛选及鉴定[J].江苏农业科学,2013,41(08):116.
 Wang Qing,et al.Screening and identification of watermelon Fusarium wilt biocontrol bacteria[J].Jiangsu Agricultural Sciences,2013,41(10):116.
[6]周乃富,谭晓风,袁军.林下养鸡对油茶林地土壤以及植株养分的影响[J].江苏农业科学,2014,42(08):341.
 Zhou Naifu,et al.Effects of feeding chicken under Camellia oleifera woods on nutrient of soil and plant[J].Jiangsu Agricultural Sciences,2014,42(10):341.
[7]王立博,张婷,王敬力,等.油茶内生真菌DNA提取及SRAP反应体系的建立[J].江苏农业科学,2013,41(12):37.
 Wang Libo,et al.Extraction of DNA from Camellia oleifera endophytic fungi and establishment of SRAP reaction system[J].Jiangsu Agricultural Sciences,2013,41(10):37.
[8]王华,胡锦珍,胡冬南,等.不同肥料对油茶林土壤微生物及酶活性的影响[J].江苏农业科学,2016,44(06):461.
 Wang Hua,et al.Effects of different fertilization treatments on soil microorganisms and enzyme activities in Camellia oleifera forest[J].Jiangsu Agricultural Sciences,2016,44(10):461.
[9]陆铮铮,蒋选利.烟草青枯病菌土壤拮抗细菌的筛选及鉴定[J].江苏农业科学,2014,42(06):99.
 Lu Zhengzheng,et al.Screening and identification of antagonistic bacteria in soil against Ralstonia solancearum[J].Jiangsu Agricultural Sciences,2014,42(10):99.
[10]周德明,艾芹,周国英.12种植物对油茶炭疽病菌和软腐病菌的抑制活性[J].江苏农业科学,2015,43(06):121.
 Zhou Deming,et al.Inhibitory activity of 12 kinds of plants to Camellia anthrax and soft rot pathogen[J].Jiangsu Agricultural Sciences,2015,43(10):121.

备注/Memo

备注/Memo:
收稿日期:2023-06-13
基金项目:中央财政林业科技推广示范资金(编号:[2022]XT18);湖南省林业科技攻关与创新项目(编号:XLKY202321);湖南省油茶产业发展资金(编号:湘财资环指[2023]16号、66号)。
作者简介:桑梦科(1996—),男,河南平舆人,硕士研究生,主要从事生物农药研究。E-mail:1604306243@qq.com。
通信作者:周国英,博士,教授,博士生导师,主要从事微生物资源开发与利用、林业微生物、植物检疫方面的研究。E-mail:s2393694264@outlook.com。
更新日期/Last Update: 2024-05-20