[1]刘畅,王晓,李宪松,等. 我国草莓生产态势及国内外比较分析[J]. 中国果树,2023(7):136-140.
[2]麻剑钧,刘晓慈,金龙新,等. 基于机器视觉的农作物病害识别研究进展[J]. 湖南农业科学,2023(9):97-100.
[3]Liu Z X,Du Z X,Peng Y,et al. Study on corn disease identification based on PCA and SVM[C]//2020 IEEE 4th Information Technology,Networking,Electronic and Automation Control Conference (ITNEC).Chongqing:IEEE,2020:661-664.
[4]Chaudhary A,Kolhe S,Kamal R. An improved random forest classifier for multi-class classification[J]. Information Processing in Agriculture,2016,3(4):215-222.
[5]张开兴,吕高龙,贾浩,等. 基于图像处理和BP神经网络的玉米叶部病害识别[J]. 中国农机化学报,2019,40(8):122-126.
[6]苏仕芳,乔焰,饶元. 基于迁移学习的葡萄叶片病害识别及移动端应用[J]. 农业工程学报,2021,37(10):127-134.
[7]何雨霜,王琢,王湘平,等. 深度学习在农作物病害图像识别中的研究进展[J]. 中国农机化学报,2023,44(2):148-155.
[8]姚建斌,张英娜,刘建华.基于卷积神经网络和迁移学习的小麦病虫害识别[J]. 华北水利水电大学学报(自然科学版),2022,43(2):102-108.
[9]刘敏,周丽. 基于多尺度特征融合网络的苹果病害叶片检测[J]. 中国农机化学报,2023,44(8):184-190.
[10]陈伟文,邝祝芳,王忠伟. 基于卷积神经网络的种苗病害识别方法[J]. 中南林业科技大学学报,2022,42(7):35-43.
[11]熊梦园,詹炜,桂连友,等. 基于ResNet模型的玉米叶片病害检测与识别[J]. 江苏农业科学,2023,51(8):164-170.
[12]黄铝文,郑梁,黄煜,等. 基于多尺度卷积与通道域增强的草莓病害识别方法[J]. 江苏农业科学,2023,51(10):202-210.
[13]Yu H L,Cheng X H,Chen C C,et al. Apple leaf disease recognition method with improved residual network[J]. Multimedia Tools and Applications,2022,81(6):7759-7782.
[14]Ma L,Guo X L,Zhao S K,et al. Algorithm of strawberry disease recognition based on deep convolutional neural network[J]. Complexity,2021,2021:6683255.
[15]Afzaal U,Bhattarai B,Pandeya Y R,et al. An instance segmentation model for strawberry diseases based on mask R-CNN[J]. Sensors,2021,21(19):6565.
[16]Howard A,Sandler M,Chen B,et al. Searching for MobileNet v3[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV).Seoul:IEEE,2019:1314-1324.
[17]Howard A G,Zhu M L,Chen B,et al. MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL]. (2017-04-17)[2023-09-10].http://arxiv.org/abs/1704.04861.pdf.
[18]Sandler M,Howard A,Zhu M L,et al. MobileNet v2:inverted residuals and linear bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018:4510-4520.
[19]Szegedy C,Liu W,Jia Y Q,et al. Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Boston:IEEE,2015:1-9.
[20]Szegedy C,Ioffe S,Vanhoucke V,et al. Inception-v4,inception-ResNet and the impact of residual connections on learning[C]. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence.San Francisco:ACM,2017:4278-4284.
[21]He K M,Zhang X Y,Ren S Q,et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas:IEEE,2016:770-778.
[22]皇甫晓瑛,钱惠敏,黄敏. 结合注意力机制的深度神经网络综述[J]. 计算机与现代化,2023(2):40-49,57.
[23]Hu J,Shen L,Sun G. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018:7132-7141.
[24]Wang Q L,Wu B G,Zhu P F,et al. ECA-net:efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Seattle:IEEE,2020:11531-11539.
[25]Woo S,Park J,Lee J Y,et al. CBAM:convolutional block attention module[C]//European Conference on Computer Vision.Cham:Springer,2018:3-19.
[26]Saini R,Jha N K,Das B,et al. ULSAM:ultra-lightweight subspace attention module for compact convolutional neural networks[C]//2020 IEEE Winter Conference on Applications of Computer Vision (WACV).Snowmass:IEEE,2020:1616-1625.
[27]Yang B,Bender G,Le Q V,et al. CondConv:conditionally parameterized convolutions for efficient inference[EB/OL]. (2019-04-10)[2023-09-11]. http://arxiv.org/abs/1904.04971.pdf.
[1]余骥远,高尚兵,李洁,等.基于MS-PLNet和高光谱图像的绿豆叶斑病病级分类[J].江苏农业科学,2023,51(6):178.
Yu Jiyuan,et al.Classification of mung bean leaf spot based on MS-PLNet and hyperspectral images[J].Jiangsu Agricultural Sciences,2023,51(10):178.
[2]马晓,邢雪,武青海.基于改进ConvNext的复杂背景下玉米叶片病害分类[J].江苏农业科学,2023,51(19):190.
Ma Xiao,et al.Maize leaf disease classification under complex background based on improved ConvNext[J].Jiangsu Agricultural Sciences,2023,51(10):190.
[3]谭彬,蔡健荣,许骞,等.基于注意力机制改进卷积神经网络的柑橘病虫害识别[J].江苏农业科学,2024,52(8):176.
Tan Bin,et al.Recognition of citrus pests and diseases based on attention mechanism improved convolutional neural networks[J].Jiangsu Agricultural Sciences,2024,52(10):176.
[4]张澳雪,崔艳荣,李素若,等.基于改进RegNet网络的玉米叶片病害识别研究[J].江苏农业科学,2024,52(11):216.
Zhang Aoxue,et al.Identification of maize leaf diseases based on improved RegNet network[J].Jiangsu Agricultural Sciences,2024,52(10):216.
[5]王浩宇,崔艳荣.基于改进ShuffleNet v2模型的苹果叶片病害识别方法[J].江苏农业科学,2024,52(13):214.
Wang Haoyu,et al.Apple leaf disease identification method based on improved ShuffleNet v2 model[J].Jiangsu Agricultural Sciences,2024,52(10):214.
[6]梁倩倩,陈勇,崔艳荣.基于改进轻量化网络MobileViT的苹果叶片病虫害识别方法[J].江苏农业科学,2024,52(14):222.
Liang Qianqian,et al.An apple leaf pest identification method based on improved lightweight network MobileViT[J].Jiangsu Agricultural Sciences,2024,52(10):222.
[7]戴硕,白涛,李东亚,等.基于知识蒸馏及改进ShuffleNet v2的棉花病虫害识别方法[J].江苏农业科学,2024,52(15):222.
Dai Shuo,et al.Recognition of cotton pests and diseases based on knowledge distillation and improved ShuffleNet v2[J].Jiangsu Agricultural Sciences,2024,52(10):222.
[8]严露露,朱赞彬,冯世杰,等.基于改进FixMatch算法的半监督番茄病虫害识别[J].江苏农业科学,2024,52(20):244.
Yan Lulu,et al.Semi-supervised identification of tomato diseases and pests based on improved FixMatch algorithm[J].Jiangsu Agricultural Sciences,2024,52(10):244.
[9]董天亮,李佳,马晓,等.基于SC-ConvNeXt网络模型的小麦叶片病害识别方法[J].江苏农业科学,2025,53(5):129.
Dong Tianliang,et al.A wheat leaf disease recognition method based on SC-ConvNeXt network model[J].Jiangsu Agricultural Sciences,2025,53(10):129.