[1]谭海文,吴永琼,秦莉,等. 我国番茄侵染性病害种类变迁及其发生概况[J]. 中国蔬菜,2019(1):80-84.
[2]陈伟文,邝祝芳,王忠伟. 基于卷积神经网络的种苗病害识别方法[J]. 中南林业科技大学学报,2022,42(7):35-43.
[3]徐振南,王建坤,胡益嘉,等. 基于MobileNet v3的马铃薯病害识别[J]. 江苏农业科学,2022,50(10):176-182.
[4]胡玲艳,周婷,刘艳,等. 基于轻量级网络自适应特征提取的番茄病害识别[J]. 江苏农业学报,2022,38(3):696-705.
[5]孙文杰,牟少敏,董萌萍,等. 基于卷积循环神经网络的桃树叶部病害图像识别[J]. 山东农业大学学报(自然科学版),2020,51(6):998-1003.
[6]林建吾,张欣,陈孝玉龙,等. 基于轻量化卷积神经网络的番茄病害图像识别[J]. 无线电工程,2022,52(8):1347-1353.
[7]赵越,赵辉,姜永成,等. 基于深度学习的马铃薯叶片病害检测方法[J]. 中国农机化学报,2022,43(10):183-189.
[8]帖军,隆娟娟,郑禄,等. 基于SK-EfficientNet的番茄叶片病害识别模型[J]. 广西师范大学学报(自然科学版),2022,40(4):104-114.
[9]周巧黎,马丽,曹丽英,等. 基于改进轻量级卷积神经网络MobileNet v3的番茄叶片病害识别[J]. 智慧农业,2022,4(1):47-56.
[10]牛学德,高丙朋,南新元,等. 基于改进DenseNet卷积神经网络的番茄叶片病害检测[J]. 江苏农业学报,2022,38(1):129-134.
[11]谢家兴,陈斌瀚,彭家骏,等. 基于改进ShuffleNet v2的荔枝叶片病虫害图像识别[J]. 果树学报,2023,40(5):1024-1035.
[12]徐健,胡道杰,刘秀平,等. 基于改进型RFB-MobileNet v3的棉杂图像检测[J]. 纺织学报,2023,44(1):179-187.
[13]陈桂芬,赵姗,曹丽英,等. 基于迁移学习与卷积神经网络的玉米植株病害识别[J]. 智慧农业,2019,1(2):34-44.
[14]孙海燕,陈云博,封丁惟,等. 基于注意力模型和轻量化YOLO v4的林业害虫检测方法[J]. 计算机应用,2022,42(11):3580-3587.
[15]白祉旭,王衡军,郭可翔. 基于图像颜色随机变换的对抗样本生成方法[J]. 计算机科学,2023,50(4):88-95.
[16]Howard A,Sandler M,Chen B,et al. Searching for MobileNet v3[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV).Seoul:IEEE,2019:1314-1324.
[17]Howard A G,Zhu M L,Chen B,et al. MobileNets:efficient convolutional neural networks for mobile vision applications[J]. ArXiv e-Prints,2017:arXiv:1704.04861.
[18]Sandler M,Howard A,Zhu M L,et al. MobileNet v2:inverted residuals and linear bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018:4510-4520.
[19]Thakkar V,Tewary S,Chakraborty C. Batch normalization in convolutional neural Networks-a comparative study with CIFAR-10 data[C]//2018 Fifth International Conference on Emerging Applications of Information Technology (EAIT).Kolkata:IEEE,2018:1-5.
[20]Li H,Kadav A,Durdanovic I,et al. Pruning filters for efficient ConvNets[EB/OL]. (2016-09-15)[2023-09-01]. https://arxiv.org/pdf/1608.08710.pdf.
[1]崔艳荣,卞珍怡,高英宁.基于生成对抗网络的花卉识别方法[J].江苏农业科学,2022,50(22):200.
Cui Yanrong,et al.Flower recognition method based on generative adversarial networks[J].Jiangsu Agricultural Sciences,2022,50(11):200.
[2]赵赫,李卫国,杨止谦.基于改进YOLOv4的降雨天气下番茄目标与抓取位置检测[J].江苏农业科学,2023,51(1):202.
Zhao He??et al.Detection of tomato target and grasping position in rainy weather by improved YOLOv4[J].Jiangsu Agricultural Sciences,2023,51(11):202.
[3]马晓,邢雪,武青海.基于改进ConvNext的复杂背景下玉米叶片病害分类[J].江苏农业科学,2023,51(19):190.
Ma Xiao,et al.Maize leaf disease classification under complex background based on improved ConvNext[J].Jiangsu Agricultural Sciences,2023,51(11):190.
[4]肖天赐,陈燕红,李永可,等.基于改进通道注意力机制的农作物病害识别模型研究[J].江苏农业科学,2023,51(24):168.
Xiao Tianci,et al.Study on crop disease identification model based on improved channel attention mechanism[J].Jiangsu Agricultural Sciences,2023,51(11):168.
[5]李名博,任东悦,郭俊旺,等.基于改进YOLOX-S的玉米病害识别[J].江苏农业科学,2024,52(3):237.
Li Mingbo,et al.Maize disease identification based on improved YOLOX-S[J].Jiangsu Agricultural Sciences,2024,52(11):237.
[6]封成智,刘强德,王志伟,等.基于深度学习的番茄叶片病害可视化识别技术研究[J].江苏农业科学,2025,53(5):174.
Feng Chengzhi,et al.Study on visual recognition technology of tomato leaf disease based on deep learning[J].Jiangsu Agricultural Sciences,2025,53(11):174.
[7]王九玲,周会国,李文峰.基于轻量化密集尺度网络的番茄叶片病害识别算法[J].江苏农业科学,2025,53(5):156.
Wang Jiuling,et al.Tomato leaf disease recognition algorithm based on lightweight dense scale network[J].Jiangsu Agricultural Sciences,2025,53(11):156.