|本期目录/Table of Contents|

[1]翟林,韩雪洁,李启艳,等.基于土壤生态化学计量的红壤侵蚀退化区植被恢复过程中的养分平衡机制[J].江苏农业科学,2024,52(11):238-247.
 Zhai Lin,et al.Nutrient balance mechanism of vegetation restoration in red soil erosion degraded area based on soil ecological stoichiometry[J].Jiangsu Agricultural Sciences,2024,52(11):238-247.
点击复制

基于土壤生态化学计量的红壤侵蚀退化区植被恢复过程中的养分平衡机制(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第11期
页码:
238-247
栏目:
资源与环境
出版日期:
2024-06-05

文章信息/Info

Title:
Nutrient balance mechanism of vegetation restoration in red soil erosion degraded area based on soil ecological stoichiometry
作者:
翟林1韩雪洁1李启艳1刘陵桦1孟维彩1蔡翠婷1侯晓龙1234
1.福建农林大学林学院,福建福州 350002; 2.南方红壤区水土保持国家林业和草原局重点实验室,福建福州 350002;3.福建长汀红壤丘陵生态系统国家定位观测研究站,福建龙岩 364000; 4.海峡两岸红壤区水土保持协同创新中心,福建福州 350002
Author(s):
Zhai Linet al
关键词:
红壤侵蚀退化区水土流失植被恢复马尾松生态化学计量养分平衡机制
Keywords:
-
分类号:
S157;X171.4
DOI:
-
文献标志码:
A
摘要:
土壤化学计量对退化地植被恢复后土壤养分限制变化有重要的指示作用,目前红壤退化生态系统恢复过程中的养分限制机理还不清楚,以福建省长汀县红壤侵蚀区不同植被恢复阶段马尾松(Pinus massoniana)林为研究对象,调查测定不同恢复阶段马尾松林植被组成和土壤理化特性,分析不同植被恢复阶段群落特征与土壤化学计量间的内在关系。结果表明,随着植被的恢复,植物丰富度(DGDM)、植物多样性(H′)、植物优势度(DS)及植物均匀度(E)均明显提升,针叶林(CF)和针阔混交林(CBF)与阔叶林(BF)恢复阶段的灌木层和乔木层差距主要体现为植物种类变化显著,说明恢复后期植物多样性提升变缓;随着植被的恢复,土壤理化特性逐渐改善,土壤持水特性、孔隙性、TC含量和TN含量呈逐渐增加趋势,而土壤TP含量不同恢复阶段间无显著差异(P>0.05);与全国土壤平均值相比,土壤C ∶N、C ∶P总体较高,而N ∶P总体较低,N、P是研究区持续存在的限制性营养元素;植物多样性与土壤C、N、P及其化学计量显著相关,土壤化学计量的决定系数为32.4%~65.1%;灰色关联分析结果表明,C ∶P、N ∶P对DGDS变化的响应效果要比单个因子TC含量、TN含量更好,E与C ∶N最为相关(关联度为0.777),DG与土壤TC含量、TN含量和N ∶P变化关联度最高,其次为DS。综上,土壤化学计量与植物群落组成多样性密切相关,可作为退化地植被恢复后期土壤养分平衡的重要评判指标。
Abstract:
-

参考文献/References:

[1]彭浪,段剑,刘士余,等. 花岗岩侵蚀区不同水土流失治理模式下的植物多样性特征[J]. 水土保持通报,2022,42(1):191-197.
[2]胡斌,段昌群,王震洪,等. 植被恢复措施对退化生态系统土壤酶活性及肥力的影响[J]. 土壤学报,2002,39(4):604-608.
[3]王从容,李守中,杨贤宇. 亚热带红壤侵蚀退化区不同恢复水平生境内先锋树种竞争特征[J]. 应用与环境生物学报,2019,25(2):239-245.
[4]吴茜,袁在翔,关庆伟,等. 紫金山落叶阔叶林主要树种空间分布格局及种间关联性[J]. 西北农林科技大学学报(自然科学版),2023,51(10):71-79.
[5]赵元,张伟,胡培雷,等. 桂西北喀斯特峰丛洼地不同植被恢复方式下土壤有机碳组分变化特征[J]. 生态学报,2021,41(21):8535-8544.
[6]Jiang M,Yang X,Wang T,et al. A direct comparison of the effects and mechanisms between species richness and genotype richness in a dominant species on multiple ecosystem functions[J]. Ecology and Evolution,2021,11(20):14125-14134.
[7]Ma R T,Hu F N,Liu J F,et al. Shifts in soil nutrient concentrations and C ∶N ∶P stoichiometry during long-term natural vegetation restoration[J]. PeerJ,2020,8:e8382.
[8]Zhang Y W,Shangguan Z P.Interaction of soil water storage and stoichiometrical characteristics in the long-term natural vegetation restoration on the Loess Plateau[J]. Ecological Engineering,2018,116:7-13.
[9]Qiu K Y,Xie Y Z,Xu D M,et al. Ecosystem functions including soil organic carbon,total nitrogen and available potassium are crucial for vegetation recovery[J]. Scientific Reports,2018,8:7607.
[10]di Palo F,Fornara D A. Plant and soil nutrient stoichiometry along primary ecological successions:is there any link?[J]. PLoS One,2017,12(8):e0182569.
[11]姜路喜,杨安定,岳亚军,等. 生态化学计量特征对松栎混交林生产力的影响[J]. 西北林学院学报,2018,33(5):31-37.
[12]Ji S W,Jiang L M,Hu D,et al. Impacts of plant and soil stoichiometry on species diversity in a desert ecosystem[J]. AoB Plants,2022,14(4):plac034.
[13]Xu H W,Liu Q,Wang S Y,et al. A global meta-analysis of the impacts of exotic plant species invasion on plant diversity and soil properties[J]. The Science of the Total Environment,2022,810:152286.
[14]喻林华,方晰,项文化,等. 亚热带4种林分类型枯落物层和土壤层的碳氮磷化学计量特征[J]. 林业科学,2016,52(10):10-21.
[15]王玉婷,查轩,陈世发,等. 红壤侵蚀退化马尾松林下不同治理模式土壤化学计量特征[J]. 应用生态学报,2020,31(1):17-24.
[16]李启艳,黄偲祺,朱晨璐,等. 离子型稀土矿堆浸场地不同恢复年限植被多样性[J]. 森林与环境学报,2020,40(3):251-259.
[17]马闯,杨竟艺,高云昌,等. 八仙山不同类型松栎林群落主要特征分析[J]. 广西植物,2021,41(8):1306-1314.
[18]王晓锋,刘婷婷,龚小杰,等. 三峡库区消落带典型植物根际土壤磷形态特征[J]. 生态学报,2020,40(4):1342-1356.
[19]胡华英,张燕林,褚昭沛,等. 红壤侵蚀区不同植被恢复阶段土壤酶活性和微生物多样性变化[J]. 应用与环境生物学报,2021,27(3):734-741.
[20]刘鑫鼎. 长汀红壤侵蚀区不同植被恢复阶段群落组成及土壤特性研究[D]. 福州:福建农林大学,2014.
[21]管鸿智,黄荣珍,朱丽琴,等. 红壤区不同生态恢复林分的土壤微生物群落差异[J]. 森林与环境学报,2023,43(2):177-184.
[22]张富荣,柳洋,史常明,等. 不同恢复年限刺槐林土壤碳、氮、磷含量及其生态化学计量特征[J]. 生态环境学报,2021,30(3):485-491.
[23]雷丽群,卢立华,农友,等. 不同林龄马尾松人工林土壤碳氮磷生态化学计量特征[J]. 林业科学研究,2017,30(6):954-960.
[24]陆晓辉. 马尾松凋落物特性及松针分解过程与调控研究[D]. 贵阳:贵州大学,2017.
[25]姜霞,吴鹏,谢涛,等. 雷公山自然保护区森林土壤碳、氮、磷化学计量特征的垂直地带性[J]. 江苏农业科学,2018,46(14):292-295.
[26]Zhang Y,Li P,Liu X J,et al. Effects of farmland conversion on the stoichiometry of carbon,nitrogen,and phosphorus in soil aggregates on the Loess Plateau of China[J]. Geoderma,2019,351:188-196.
[27]Deng L,Shangguan Z P. Afforestation drives soil carbon and nitrogen changes in China[J]. Land Degradation & Development,2017,28(1):151-165.
[28]朱平宗,张光辉,杨文利,等. 红壤区林地浅沟不同植被类型土壤生态化学计量特征[J]. 水土保持研究,2020,27(6):60-65.
[29]张鼎华,沈乒松,林开淼. 福建山地红壤土壤磷素资源的研究[J]. 土壤通报,2014,45(1):130-134.
[30]崔宁洁,陈小红,刘洋,等. 不同林龄马尾松人工林林下灌木和草本多样性[J]. 生态学报,2014,34(15):4313-4323.
[31]肖艳梅,解婧媛,姚义鹏,等. 桂林岩溶石山常绿落叶阔叶混交林乔木层优势物种生态位研究[J]. 生态学报,2021,41(20):8159-8170.
[32]金超,吴初平,丁易,等. 午潮山常绿次生阔叶林主要木本植物功能群及其演替特征[J]. 生态学报,2021,41(8):3053-3066.
[33]乔文静,戴银月,张伟,等. 黄土丘陵区撂荒恢复过程中植物群落组成与土壤养分及酶活性变化的关系[J]. 环境科学,2018,39(12):5687-5698.
[34]冯柳俊,陈志强,陈志彪,等. 南方红壤侵蚀区不同治理年限样地芒萁和土壤的生态化学计量特征及相关性分析[J]. 植物资源与环境学报,2019,28(3):58-65.
[35]Zhou Y,Boutton T W,Ben Wu X. Soil C ∶N ∶P stoichiometry responds to vegetation change from grassland to woodland[J]. Biogeochemistry,2018,140(3):341-357.
[36]杨壹,邱开阳,李静尧,等. 贺兰山东坡典型植物群落多样性垂直分布特征与土壤因子的关系[J]. 生态学报,2023,43(12):4995-5004.
[37]高江平,赵锐锋,张丽华,等. 降雨变化对荒漠草原植物群落多样性与土壤C ∶N ∶P生态化学计量特征的影响[J]. 环境科学,2021,42(2):977-987.
[38]Su Y Q,Jia X R,Zhang L,et al. Size-dependent associations of woody plant structural diversity with soil C ∶N ∶P stoichiometry in a subtropical forest[J]. Frontiers in Environmental Science,2022(10):1634.
[39]李婷婷,唐永彬,周润惠,等. 云顶山不同人工林林下植物多样性及其与土壤理化性质的关系[J]. 生态学报,2021,41(3):1168-1177.

相似文献/References:

[1]代富强.水土保持技术的适宜性评价[J].江苏农业科学,2014,42(12):8.
 Dai Fuqiang.Evaluation on suitability of soil and water conservation technology[J].Jiangsu Agricultural Sciences,2014,42(11):8.
[2]周红艺,李辉霞.华南花岗岩风化壳裂隙发育对崩岗侵蚀的影响[J].江苏农业科学,2014,42(10):352.
 Zhou Hongyi,et al.Effect of soil cracks development of weathered granite shell on collapsing erosion in Southern China[J].Jiangsu Agricultural Sciences,2014,42(11):352.
[3]马悦,郭年冬,张瑞芳,等.石灰岩坡面花生不同覆盖度水土及养分流失规律[J].江苏农业科学,2016,44(09):429.
 Ma Yue,et al.Study on water and soil loss and nutrient loss of limestone slopes with different coverage of peanuts[J].Jiangsu Agricultural Sciences,2016,44(11):429.
[4]邵方泽,张慧,缪旭波.基于RUSLE模型的南京市2006—2014年水土侵蚀时空分布特征[J].江苏农业科学,2017,45(17):264.
 Shao Fangze,et al.Spatial and temporal distribution characteristics of soil erosion in Nanjing City from 2006 to 2014 based on Revised Universal Soil Loss Equation (RUSLE)[J].Jiangsu Agricultural Sciences,2017,45(11):264.

备注/Memo

备注/Memo:
收稿日期:2023-08-08
基金项目:国家自然科学基金(编号:32201572);福建省科技自然科学基金(编号:2022J01121);福建农林大学科技创新专项基金(编号:KFb22035XA)。
作者简介:翟林(1998—),男,江西宜春人,硕士研究生,主要从事恢复生态与生态工程研究。E-mail:1210431013@fafu.edu.cn。
通信作者:侯晓龙,博士,副教授,主要从事退化地生态修复、水土保持研究。E-mail:xl.hou@fafu.edu.cn。
更新日期/Last Update: 2024-06-05