|本期目录/Table of Contents|

[1]何文丽,张玉烛,魏中伟.海水胁迫下外源硅对优质高产杂交稻产量及生理特性的影响[J].江苏农业科学,2024,52(12):105-114.
 He Wenli,et al.Influences of exogenous silicon on yield and physiological characteristics of hybrid rice with high quality and high yield under seawater stress[J].Jiangsu Agricultural Sciences,2024,52(12):105-114.
点击复制

海水胁迫下外源硅对优质高产杂交稻产量及生理特性的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第12期
页码:
105-114
栏目:
遗传育种与耕作栽培
出版日期:
2024-06-20

文章信息/Info

Title:
Influences of exogenous silicon on yield and physiological characteristics of hybrid rice with high quality and high yield under seawater stress
作者:
何文丽1张玉烛1234魏中伟234
1.海南大学,海南海口 570208; 2.湖南杂交水稻研究中心,湖南长沙 410125;3.三亚市国家耐盐碱水稻技术创新中心,海南三亚 572024; 4.杂交水稻全国重点实验室,湖南长沙 410125
Author(s):
He Wenliet al
关键词:
水稻硅肥盐胁迫产量生理特性
Keywords:
-
分类号:
S511.01;S511.06
DOI:
-
文献标志码:
A
摘要:
盐胁迫是制约水稻生产的主要非生物胁迫因子之一,硅(Si)作为提高植物抗逆性的微量元素之一,在许多作物逆境栽培中报道,但在海水复合盐胁迫下,施用外源硅对水稻耐盐性的影响研究鲜有报道。为探究海水复合盐胁迫下外源硅对优质高产杂交稻产量及生理特性的影响,以优质高产杂交稻Y两优957和晶两优534为研究材料,用天然海水与淡水调配,设置0.0%、0.3%和0.6% 3种盐浓度,研究海水胁迫下外源硅对优质高产杂交稻产量及生理特性的影响。结果表明,盐胁迫显著降低了水稻产量、产量构成因子数值、干物质量和钾离子含量,显著提高了钠离子、丙二醛含量和抗氧化物酶活性。外源硅处理能够减缓盐分胁迫,显著提高了0.0%、0.3%浓度海水胁迫下的水稻产量、产量构成因子数值(结实率除外)和除成熟期及晶两优534齐穗期穗、Y两优957孕穗期叶片外的各器官钾离子含量,并降低海水胁迫下钠离子含量,改善海水胁迫下水稻的钾、钠离子分配比例;在0.3%和0.6%浓度的海水胁迫下,外源硅处理显著提高水稻叶片抗氧化物酶活性,显著降低丙二醛含量(Y两优957齐穗期除外)。盐地增施外源硅是缓解水稻盐胁迫、提高产量的一项有效栽培措施。
Abstract:
-

参考文献/References:

[1]李彬,王志春,孙志高,等. 中国盐碱地资源与可持续利用研究[J]. 干旱地区农业研究,2005,23(2):154-158.
[2]凌启鸿. 盐碱地种稻有关问题的讨论[J]. 中国稻米,2018,24(4):1-2.
[3]杨劲松. 中国盐渍土研究的发展历程与展望[J]. 土壤学报,2008,45(5):837-845.
[4]王才林,张亚东,赵凌,等. 耐盐碱水稻研究现状、问题与建议[J]. 中国稻米,2019,25(1):1-6.
[5]颜佳倩,顾逸彪,薛张逸,等. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报,2022,48(6):1463-1475.
[6]Zhang J F. Salinity affects the proteomics of rice roots and leaves[J]. Proteomics,2014,14(15):1711-1712.
[7]Munns R,Gilliham M. Salinity tolerance of crops:what is the cost?[J]. New Phytologist,2015,208(3):668-673.
[8]Ashraf M,Athar H R,Harris P J C,et al. Some prospective strategies for improving crop salt tolerance[M]//Advances in agronomy. Amsterdam:Elsevier,2008:45-110.
[9]Gregorio G B,Senadhira D,Mendoza R D,et al. Progress in breeding for salinity tolerance and associated abiotic stresses in rice[J]. Field Crops Research,2002,76(2/3):91-101.
[10]徐呈祥,刘兆普,刘友良. 硅在植物中的生理功能[J]. 植物生理学通讯,2004,40(6):753-757.
[11]束良佐,刘英慧. 硅对盐胁迫下玉米幼苗生长的影响[J]. 农业环境保护,2001,20(1):38-40.
[12]王丽燕. 硅对野生大豆幼苗耐盐性的影响及其机制研究[J]. 大豆科学,2013,32(5):659-663.
[13]闫国超,樊小平,谭礼,等. 盐胁迫下添加外源硅提高水稻抗氧化酶活性与钠钾平衡相关基因表达[J]. 植物营养与肥料学报,2020,26(11):1935-1943.
[14]Sanglard L M V P,Detmann K C,Martins S C V,et al. The role of silicon in metabolic acclimation of rice plants challenged with arsenic[J]. Environmental and Experimental Botany,2016,123:22-36.
[15]张文强,黄益宗,招礼军,等. 盐胁迫下外源硅对硅突变体与野生型水稻种子萌发的影响[J]. 生态毒理学报,2009,4(6):867-873.
[16]彭江涛,候新坡,兰涛,等. 水稻苗期耐盐性基因SST分子标记的筛选与应用[J]. 福建农林大学学报(自然科学版),2017,46(2):166-171.
[17]孙现军,姜奇彦,胡正,等. 水稻资源全生育期耐盐性鉴定筛选[J]. 作物学报,2019,45(11):1656-1663.
[18]郭荟,屠乃美,马国柱,等. 硅肥对双季水稻生长发育及产量的影响[J]. 作物研究,2021,35(6):549-554.
[19]Wang Y N,Liang C Z,Meng Z G,et al. Leveraging Atriplex hortensis choline monooxygenase to improve chilling tolerance in cotton[J]. Environmental and Experimental Botany,2019,162:364-373.
[20]郑英杰. 盐胁迫对水稻的影响及水稻耐盐育种研究[J]. 北方水稻,2013,43(5):71-74,80.
[21]林兵,赵步洪. 水稻耐盐碱生理机制与遗传改良的研究进展[J]. 江苏农业科学,2022,50(16):37-43,238.
[22]周根友,翟彩娇,邓先亮,等. 盐逆境对水稻产量、光合特性及品质的影响[J]. 中国水稻科学,2018,32(2):146-154.
[23]韦还和,张徐彬,葛佳琳,等. 盐胁迫对水稻颖花形成及籽粒充实的影响[J]. 作物学报,2021,47(12):2471-2480.
[24]胡博文,谷娇娇,贾琰,等. 盐胁迫对寒地粳稻籽粒淀粉形成积累及产量的影响[J]. 华北农学报,2019,34(1):115-123.
[25]韦还和,葛佳琳,张徐彬,等. 盐胁迫下粳稻品种南粳9108分蘖特性及其与群体生产力的关系[J]. 作物学报,2020,46(8):1238-1247.
[26]Gay F,Maraval I,Roques S,et al. Effect of salinity on yield and 2-acetyl-1-pyrroline content in the grains of three fragrant rice cultivars (Oryza sativa L.) in Camargue (France)[J]. Field Crops Research,2010,117(1):154-160.
[27]韦海敏,陶伟科,周燕,等. 硅素穗肥优化滨海盐碱地水稻矿质元素吸收分配提高耐盐性[J]. 作物学报,2023,49(5):1339-1349.
[28]龚金龙,胡雅杰,龙厚元,等. 不同时期施硅对超级稻产量和硅素吸收、利用效率的影响[J]. 中国农业科学,2012,45(8):1475-1488.
[29]刘梦霜,郭海峰,陈观秀,等. 不同水稻品种对NaCl胁迫的生理响应及耐盐性评价[J]. 热带作物学报,2023,44(2):326-336.
[30]Khan M A,Abdullah Z. Salinity–sodicity induced changes in reproductive physiology of rice (Oryza sativa) under dense soil conditions[J]. Environmental and Experimental Botany,2003,49(2):145-157.
[31]Shi Y,Wang Y C,Flowers T J,et al. Silicon decreases chloride transport in rice (Oryza sativa L.) in saline conditions[J]. Journal of Plant Physiology,2013,170(9):847-853.
[32]Kronzucker H J,Coskun D,Schulze L M,et al. Sodium as nutrient and toxicant[J]. Plant and Soil,2013,369(1/2):1-23.
[33]Hasegawa P M. Sodium (Na+) homeostasis and salt tolerance of plants[J]. Environmental and Experimental Botany,2013,92:19-31.
[34]Flowers T J,Colmer T D. Plant salt tolerance:adaptations in halophytes[J]. Annals of Botany,2015,115(3):327-331.
[35]Zhu Y X,Gong H J,Yin J L. Role of silicon in mediating salt tolerance in plants:a review[J]. Plants,2019,8(6):147.
[36]张徐彬,陈熙,葛佳琳,等. 盐-旱复合胁迫对水稻种子萌发和幼苗生长的影响[J]. 扬州大学学报(农业与生命科学版),2022,43(2):29-35.
[37]Moradi F,Ismail A M. Responses of photosynthesis,chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice[J]. Annals of Botany,2007,99(6):1161-1173.
[38]Ashraf M,Rahmatullah,Afzal M,et al. Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salt-tolerant genotypes of sugarcane (Saccharum officinarum L.)[J]. Plant and Soil,2010,326(1/2):381-391.
[39]徐春莹,张亚玲,王丹,等. 盐碱胁迫对不同水稻品种抗逆和抗瘟性相关酶的影响[J]. 江苏农业科学,2017,45(4):44-46.

相似文献/References:

[1]马旭俊,刘春娟,吕世博,等.绿色荧光蛋白基因在水稻遗传转化中的应用[J].江苏农业科学,2013,41(04):35.
[2]李岳峰,居立海,张来运,等.水分胁迫下丛枝菌根对水稻/绿豆间作系统 作物生长和氮磷吸收的影响[J].江苏农业科学,2013,41(04):58.
[3]崔月峰,孙国才,王桂艳,等.不同施氮水平和前氮后移措施对水稻产量 及氮素利用率的影响[J].江苏农业科学,2013,41(04):66.
[4]张其蓉,宋发菊,田进山,等.长江中下游稻区水稻区域试验品种抗稻瘟病鉴定与评价[J].江苏农业科学,2013,41(04):92.
[5]王麒,张小明,卞景阳,等.不同插秧密度对黑龙江省第二积温带水稻产量及产量构成的影响[J].江苏农业科学,2013,41(05):60.
 Wang Qi,et al.Effect of different transplanting density on yield and yield component of rice in second temperature zone of Heilongjiang Province[J].Jiangsu Agricultural Sciences,2013,41(12):60.
[6]张国良,张森林,丁秀文,等.基质厚度和含水量对水稻育秧的影响[J].江苏农业科学,2013,41(05):62.
 Zhang Guoliang,et al.Effects of substrate thickness and water content on growth of rice seedlings[J].Jiangsu Agricultural Sciences,2013,41(12):62.
[7]赵忠宝,朱清海.稻-蟹-鳅生态系统的能值分析[J].江苏农业科学,2013,41(05):349.
 Zhao Zhongbao,et al.Emergy analysis of paddy-crab-loach ecosystem[J].Jiangsu Agricultural Sciences,2013,41(12):349.
[8]杨红福,姚克兵,束兆林,等.甲氧基丙烯酸酯类杀菌剂对水稻恶苗病的田间药效[J].江苏农业科学,2014,42(12):166.
 Yang Hongfu,et al.Field efficacy of strobilurin fungicides against rice bakanae disease[J].Jiangsu Agricultural Sciences,2014,42(12):166.
[9]唐成,陈露,安敏敏,等.稻瘟病诱导水稻幼苗叶片氧化还原系统的特征谱变化[J].江苏农业科学,2014,42(12):141.
 Tang Cheng,et al.Characteristic spectral changes of redox homeostasis system in rice seedling leaves induced by rice blast[J].Jiangsu Agricultural Sciences,2014,42(12):141.
[10]万云龙.优质水稻—春甘蓝轮作高效栽培模式[J].江苏农业科学,2014,42(12):90.
 Wan Yunlong.Efficient cultivation mode of high quality rice-spring cabbage rotation[J].Jiangsu Agricultural Sciences,2014,42(12):90.
[11]周欣,娄运生,杜泽云,等.夜间增温下生物炭配施硅肥对水稻产量和品质的影响[J].江苏农业科学,2023,51(11):80.
 Zhou Xin,et al.Influences of biochar combined with silicon fertilizer on rice yield and quality under nighttime warming[J].Jiangsu Agricultural Sciences,2023,51(12):80.

备注/Memo

备注/Memo:
收稿日期:2024-01-09
基金项目:海南省重大科技计划(编号:ZDKJ202001)。
作者简介:何文丽(2000—),女,湖北襄阳人,硕士研究生,主要从事水稻抗逆栽培生理研究。E-mail:hewenli43@163.com。
通信作者:魏中伟,博士,副研究员,主要从事水稻栽培研究。E-mail:wzw619@126.com。
更新日期/Last Update: 2024-06-20