|本期目录/Table of Contents|

[1]赵坚,鲍浩,张艳.番茄早疫病可见光图像识别模型研究[J].江苏农业科学,2024,52(12):209-217.
 Zhao Jian,et al.Study on visible light image recognition model of tomato leaf early blight[J].Jiangsu Agricultural Sciences,2024,52(12):209-217.
点击复制

番茄早疫病可见光图像识别模型研究(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第12期
页码:
209-217
栏目:
农业工程与信息技术
出版日期:
2024-06-20

文章信息/Info

Title:
Study on visible light image recognition model of tomato leaf early blight
作者:
赵坚鲍浩张艳
贵阳学院农产品无损检测工程研究中心,贵州贵阳 550005
Author(s):
Zhao Jianet al
关键词:
番茄叶片早疫病颜色特征纹理特征深度学习可见光图像识别模型
Keywords:
-
分类号:
TP391.41;S126
DOI:
-
文献标志码:
A
摘要:
以番茄为代表的茄科作物在全球经济作物中占据重要地位,番茄在其生长过程中易受多种病害的侵染,其中早疫病是严重危害番茄的一种病害,可造成番茄减产甚至绝收,因此番茄早疫病的防治工作对农业生产具有重要意义。为了能够快速、准确地识别出番茄早疫病,提出一种基于可见光图像结合深度学习技术检测番茄早疫病的方法。通过培养一批番茄植株,对其离体叶片接种茄链格孢菌,使接种样本感染早疫病,然后使用可见光图像采集设备连续采集样本的可见光图像,监测样本的变化,得出番茄叶片感染早疫病后的最早显症时间。通过归一化、背景分割、数据扩增和通道转换等方式进行数据预处理,并提取可见光图像颜色特征的一阶矩、二阶矩、三阶矩,同时结合对比度、差异性、同质性、相关性和角二阶矩等常见纹理特征进行深入分析,利用深度学习技术建立番茄早疫病的识别模型。结果表明,基于可见光图像结合深度学习技术检测番茄早疫病是可行的,建立的番茄早疫病识别模型准确率最高达到91.78%,使用该方法检测番茄早疫病具有检测速度快、识别精度高等优点。利用深度学习技术建立的番茄早疫病可见光图像识别模型可推广用于其他作物病害的检测,为作物病害的无人机遥感监测等应用场景提供技术支持。
Abstract:
-

参考文献/References:

[1]Vignesh M,Shankar S M,Subramani N,et al. Study on spray-drying of Bacillus velezensis NKMV-3 strain,its formulation and bio efficacy against early blight of tomato[J]. Biocatalysis and Agricultural Biotechnology,2022,45(2):102483.
[2]Sora S A,Sakata W M. Management of some common insect pests and diseases of tomato (Solanum lycopersicon L.)[J]. International Journal of Statistical Distributions and Applications,2022,8(2):30-39.
[3]Altalak M,Uddin M A,Alajmi A,et al. A hybrid approach for the detection and classification of tomato leaf diseases[J]. Applied Sciences,2022,12(16):8182.
[4]Thangaraj R,Anandamurugan S,Kaliappan V K. Automated tomato leaf disease classification using transfer learning-based deep convolution neural network[J]. Journal of Plant Diseases and Protection,2021,128(1):73-86.
[5]Rodríguez F J,García A,Pardo P J,et al. Study and classification of plum varieties using image analysis and deep learning techniques[J]. Progress in Artificial Intelligence,2018,7(2):119-127.
[6]张艳,孟庆龙,尚静,等. 新型图像技术在农作物病害监测预警中的应用与展望[J]. 激光杂志,2017,38(12):7-13.
[7]Nithish Kannan E,Kaushik M,Prakash P,et al. Tomato leaf disease detection using convolutional neural network with data augmentation[C]//2020 5th International Conference on Communication and Electronics Systems (ICCES). June 10-20,2020.COIMBATORE,India. IEEE,2020:1125-1132.
[8]Fuentes A,Yoon S,Kim S C,et al. A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition[J]. Sensors,2017,17(9):2022.
[9]Kanda P S,Xia K W,Kyslytysna A,et al. Tomato leaf disease recognition on leaf images based on fine-tuned residual neural networks[J]. Plants,2022,11(21):2935.
[10]Agarwal M,Singh A,Arjaria S,et al. ToLeD:tomato Leaf Disease Detection using Convolution Neural Network[J]. Procedia Computer Science,2020,167:293-301.
[11]Sladojevic S,Arsenovic M,Anderla A,et al. Deep neural networks based recognition of plant diseases by leaf image classification[J]. Computational Intelligence and Neuroscience,2016,2016:3289801.
[12]Mohanty S P,Hughes D P,Salathé M. Using deep learning for image-based plant disease detection[J]. Frontiers in Plant Science,2016,7:1419.
[13]Tetila E C,Machado B B,Menezes G K,et al. Automatic recognition of soybean leaf diseases using UAV images and deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters,2020,17(5):903-907.
[14]胡政,张艳. 降维降噪处理对番茄早疫病潜育期高光谱识别效果的影响[J]. 光谱学与光谱分析,2023,43(3):744-752.
[15]田凯. 基于图像处理的茄子叶部病害识别方法研究[D]. 广州:华南农业大学,2016.
[16]Stricker M A,Orengo M. Similarity of color images[C]//Proc SPIE 2420,Storage and Retrieval for Image and Video Databases Ⅲ,1995,2420:381-392.
[17]Ahmad N,Asif H M S,Saleem G,et al. Leaf image-based plant disease identification using color and texture features[J]. Wireless Personal Communications,2021,121(2):1139-1168.
[18]袁媛,陈雷,吴娜,等. 水稻纹枯病图像识别处理方法研究[J]. 农机化研究,2016,38(6):84-87,92.

相似文献/References:

[1]朱丽梅,崔群香,蔡元琴,等.不同茄子品种田间病害调查及其抗病性鉴定[J].江苏农业科学,2013,41(06):96.
 Zhu Limei,et al.Field investigation of disease and disease resistance identification of different eggplant varieties[J].Jiangsu Agricultural Sciences,2013,41(12):96.
[2]台莲梅,张宗敏,张亚玲,等.混配杀菌剂对马铃薯早疫病的防效及对产量的影响[J].江苏农业科学,2014,42(09):110.
 Tai Lianmei,et al.Control effect of mixed fungicide on potato early blight and its effect on yield[J].Jiangsu Agricultural Sciences,2014,42(12):110.
[3]徐凯宏,米雅婷,谷志新.基于GA-BP神经网络的温室番茄病害诊断[J].江苏农业科学,2016,44(04):387.
 Xu Kaihong,et al.Diagnosis of tomato disease in greenhouse based on GA-BP network[J].Jiangsu Agricultural Sciences,2016,44(12):387.
[4]朱丽梅,崔群香,刘卫东,等.自然病圃法和离体叶片接种法对茄早疫病抗病性鉴定比较[J].江苏农业科学,2015,43(06):116.
 Zhu Limei,et al.Comparative study on identification of tomato early blight disease resistance by natural disease nursery method and in vitro leaf inoculation method[J].Jiangsu Agricultural Sciences,2015,43(12):116.
[5]杜明华,杨甜,马燕,等.基于NIR高光谱成像技术的番茄叶片叶绿素含量检测[J].江苏农业科学,2022,50(20):48.
 Du Minghua,et al.Detection of chlorophyll content in tomato leaves based on NIR hyperspectral imaging technology[J].Jiangsu Agricultural Sciences,2022,50(12):48.
[6]马玲,杜明华,孟露,等.基于高光谱成像技术的番茄叶片叶绿素含量检测[J].江苏农业科学,2023,51(11):167.
 Ma Ling,et al.Detection of chlorophyll content in tomato leaves based on hyperspectral imaging technology[J].Jiangsu Agricultural Sciences,2023,51(12):167.

备注/Memo

备注/Memo:
收稿日期:2023-07-10
基金项目:国家自然科学基金(编号:62265003、62141501);贵阳学院硕士研究生科研基金项目(编号:GYU-YJS[2021]-49)。
作者简介:赵坚(1996—),男,安徽宿州人,硕士,主要从事农作物病害方面的研究。E-mail:2015527609@qq.com。
通信作者:张艳,博士,教授,硕士生导师,主要从事生物信息无损检测、激光雷达方面的研究。E-mail:Eileen_zy001@sohu.com。
更新日期/Last Update: 2024-06-20