[1]Vignesh M,Shankar S M,Subramani N,et al. Study on spray-drying of Bacillus velezensis NKMV-3 strain,its formulation and bio efficacy against early blight of tomato[J]. Biocatalysis and Agricultural Biotechnology,2022,45(2):102483.
[2]Sora S A,Sakata W M. Management of some common insect pests and diseases of tomato (Solanum lycopersicon L.)[J]. International Journal of Statistical Distributions and Applications,2022,8(2):30-39.
[3]Altalak M,Uddin M A,Alajmi A,et al. A hybrid approach for the detection and classification of tomato leaf diseases[J]. Applied Sciences,2022,12(16):8182.
[4]Thangaraj R,Anandamurugan S,Kaliappan V K. Automated tomato leaf disease classification using transfer learning-based deep convolution neural network[J]. Journal of Plant Diseases and Protection,2021,128(1):73-86.
[5]Rodríguez F J,García A,Pardo P J,et al. Study and classification of plum varieties using image analysis and deep learning techniques[J]. Progress in Artificial Intelligence,2018,7(2):119-127.
[6]张艳,孟庆龙,尚静,等. 新型图像技术在农作物病害监测预警中的应用与展望[J]. 激光杂志,2017,38(12):7-13.
[7]Nithish Kannan E,Kaushik M,Prakash P,et al. Tomato leaf disease detection using convolutional neural network with data augmentation[C]//2020 5th International Conference on Communication and Electronics Systems (ICCES). June 10-20,2020.COIMBATORE,India. IEEE,2020:1125-1132.
[8]Fuentes A,Yoon S,Kim S C,et al. A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition[J]. Sensors,2017,17(9):2022.
[9]Kanda P S,Xia K W,Kyslytysna A,et al. Tomato leaf disease recognition on leaf images based on fine-tuned residual neural networks[J]. Plants,2022,11(21):2935.
[10]Agarwal M,Singh A,Arjaria S,et al. ToLeD:tomato Leaf Disease Detection using Convolution Neural Network[J]. Procedia Computer Science,2020,167:293-301.
[11]Sladojevic S,Arsenovic M,Anderla A,et al. Deep neural networks based recognition of plant diseases by leaf image classification[J]. Computational Intelligence and Neuroscience,2016,2016:3289801.
[12]Mohanty S P,Hughes D P,Salathé M. Using deep learning for image-based plant disease detection[J]. Frontiers in Plant Science,2016,7:1419.
[13]Tetila E C,Machado B B,Menezes G K,et al. Automatic recognition of soybean leaf diseases using UAV images and deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters,2020,17(5):903-907.
[14]胡政,张艳. 降维降噪处理对番茄早疫病潜育期高光谱识别效果的影响[J]. 光谱学与光谱分析,2023,43(3):744-752.
[15]田凯. 基于图像处理的茄子叶部病害识别方法研究[D]. 广州:华南农业大学,2016.
[16]Stricker M A,Orengo M. Similarity of color images[C]//Proc SPIE 2420,Storage and Retrieval for Image and Video Databases Ⅲ,1995,2420:381-392.
[17]Ahmad N,Asif H M S,Saleem G,et al. Leaf image-based plant disease identification using color and texture features[J]. Wireless Personal Communications,2021,121(2):1139-1168.
[18]袁媛,陈雷,吴娜,等. 水稻纹枯病图像识别处理方法研究[J]. 农机化研究,2016,38(6):84-87,92.
[1]朱丽梅,崔群香,蔡元琴,等.不同茄子品种田间病害调查及其抗病性鉴定[J].江苏农业科学,2013,41(06):96.
Zhu Limei,et al.Field investigation of disease and disease resistance identification of different eggplant varieties[J].Jiangsu Agricultural Sciences,2013,41(12):96.
[2]台莲梅,张宗敏,张亚玲,等.混配杀菌剂对马铃薯早疫病的防效及对产量的影响[J].江苏农业科学,2014,42(09):110.
Tai Lianmei,et al.Control effect of mixed fungicide on potato early blight and its effect on yield[J].Jiangsu Agricultural Sciences,2014,42(12):110.
[3]徐凯宏,米雅婷,谷志新.基于GA-BP神经网络的温室番茄病害诊断[J].江苏农业科学,2016,44(04):387.
Xu Kaihong,et al.Diagnosis of tomato disease in greenhouse based on GA-BP network[J].Jiangsu Agricultural Sciences,2016,44(12):387.
[4]朱丽梅,崔群香,刘卫东,等.自然病圃法和离体叶片接种法对茄早疫病抗病性鉴定比较[J].江苏农业科学,2015,43(06):116.
Zhu Limei,et al.Comparative study on identification of tomato early blight disease resistance by natural disease nursery method and in vitro leaf inoculation method[J].Jiangsu Agricultural Sciences,2015,43(12):116.
[5]杜明华,杨甜,马燕,等.基于NIR高光谱成像技术的番茄叶片叶绿素含量检测[J].江苏农业科学,2022,50(20):48.
Du Minghua,et al.Detection of chlorophyll content in tomato leaves based on NIR hyperspectral imaging technology[J].Jiangsu Agricultural Sciences,2022,50(12):48.
[6]马玲,杜明华,孟露,等.基于高光谱成像技术的番茄叶片叶绿素含量检测[J].江苏农业科学,2023,51(11):167.
Ma Ling,et al.Detection of chlorophyll content in tomato leaves based on hyperspectral imaging technology[J].Jiangsu Agricultural Sciences,2023,51(12):167.