[1]张树珍. 棉花主要病害与防治措施[J]. 现代农业科技,2017(7):116-119.
[2]张红涛,朱洋,谭联,等. 基于FA-SVM技术的烟草早期病害识别[J]. 河南农业科学,2020,49(8):156-161.
[3]牛冲,牛昱光,李寒,等. 基于图像灰度直方图特征的草莓病虫害识别[J]. 江苏农业科学,2017,45(4):169-172.
[4]马慧琴,黄文江,景元书,等. 基于AdaBoost模型和mRMR算法的小麦白粉病遥感监测[J]. 农业工程学报,2017,33(5):162-169.
[5]张莉,纪铭阳,胡宗玉,等. 基于随机森林和逻辑回归分类模型的烟叶精选品控指标筛选[J]. 江苏农业科学,2020,48(3):214-217.
[6]任杰,柳毅,金鑫,等. 基于数据挖掘的蔬菜图片病害自动分类[J]. 北京师范大学学报(自然科学版),2006,42(6):592-596.
[7]王燕妮,贺莉. 基于多分类SVM的石榴叶片病害检测方法[J]. 计算机测量与控制,2020,28(9):191-195.
[8]Sugathan A,Sruthi S,Shamsudeen F M. A comparative study to detect rice plant disease using convolutional neural network (CNN) and support vector machine (SVM)[J]. Journal of Food,Agriculture & Environment,2020(2):18.
[9]Krizhevsky A,Sutskever I,Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM,2017,60(6):84-90.
[10]He K M,Zhang X Y,Ren S Q,et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016:770-778.
[11]Szegedy C,Liu W,Jia Y Q,et al. Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition.Boston:IEEE,2015:1-9.
[12]Li X,Rai L. Apple leaf disease identification and classification using ResNet models[C]//2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT).Shenzhen:IEEE,2020:738-742.
[13]王哲豪,范丽丽,何前. 基于MobileNet v2和迁移学习的番茄病害识别[J]. 江苏农业科学,2023,51(9):215-221.
[14]Vypirailenko D,Kiseleva E,Shadrin D,et al. Deep learning techniques for enhancement of weeds growth classification[C]//2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC).Glasgow:IEEE,2021:1-6.
[15]Nawaz M,Nazir T,Khan M A,et al. Plant disease classification using VGG-19 based faster-RCNN[C]//Singh M,Tyagi V,Gupta P,et al. International Conference on Advances in Computing and Data Sciences.Cham:Springer,2023:277-289.
[16]Ding X H,Zhang X Y,Han J G,et al. Scaling up your kernels to 31×31:revisiting large kernel design in CNNs[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition.New Orleans:IEEE,2022:11953-11965.
[17]Zeaiean Firrozabadi P,Hasani Moghaddam H. Evaluate the impact of Majority filter kernel size on increasing the accuracy of remotely sensed images[J]. Geography and Human Relationships,2018,1(2):806-817.
[18]Yim J,Joo D,Bae J,et al. A gift from knowledge distillation:fast optimization,network minimization and transfer learning[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu:IEEE,2017:7130-7138.
[19]Yu X,Fu L R,Dai B S,et al. Soybean leaf morphology classification based on FPN-SSD and knowledge distillation[J]. Journal of Northeast Agricultural University,2020,27(4):9-17.
[20]Kurup R V,Anupama M A,Vinayakumar R,et al. Capsule network for plant disease and plant species classification[C]//Smys S,Tavares J,Balas V,et al. International conference on computational vision and bio inspired computing.Cham:Springer,2020:413-421.
[21]Li Y H,Pan Y W,Yao T,et al. Learning click-based deep structure-preserving embeddings with visual attention[J]. ACM Transactions on Multimedia Computing,Communications,and Applications,2019,15(3):1-19.
[22]Peng J L,Wang Y,Jiang P,et al. RiceDRA-net:precise identification of rice leaf diseases with complex backgrounds using a res-attention mechanism[J]. Applied Sciences,2023,13(8):4928.
[23]Yang B H,Gao Z W,Gao Y,et al. Rapid detection and counting of wheat ears in the field using YOLO v4 with attention module[J]. Agronomy,2021,11(6):1202.
[24]鲍浩,张艳. 基于注意力机制与改进残差模块的豆叶病害识别[J]. 江苏农业科学,2023,51(16):187-194.
[25]Shorten C,Khoshgoftaar T M. A survey on image data augmentation for deep learning[J]. Journal of Big Data,2019,6(1):60.
[26]Zhang L F,Bao C L,Ma K S. Self-distillation:towards efficient and compact neural networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,44(8):4388-4403.
[27]Yang Z D,Li Z,Shao M Q,et al. Masked generative distillation[M]. Cham:Springer Nature Switzerland,2022:53-69.
[28]Chen P G,Liu S,Zhao H S,et al. Distilling knowledge via knowledge review[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Nashville:IEEE,2021:5006-5015.
[29]Ma N N,Zhang X Y,Zheng H T,et al. ShuffleNet v2:practical guidelines for efficient CNN architecture design[C]//Computer Vision - ECCV 2018:15th European Conference,Munich:ACM,2018:122-138.
[30]Li X,Wang W,Hu X,et al. Selective kernel networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. California:IEEE,2019:510-519.
[31]McHugh M L. Interrater reliability:the kappa statistic[J]. Biochemia Medica,2012,22(3):276-282.