|本期目录/Table of Contents|

[1]江颖超,李永泉,何波祥,等.微生物菌肥对龙脑型阴香根际轻基质中微生物多样性及功能的影响[J].江苏农业科学,2024,52(16):252-262.
 Jiang Yingchao,et al.Effects of microbial fertilizer on diversity and function of microorganisms in light rhizosphere matrix of borneol-type Cinnamomum burmannii[J].Jiangsu Agricultural Sciences,2024,52(16):252-262.
点击复制

微生物菌肥对龙脑型阴香根际轻基质中微生物多样性及功能的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第16期
页码:
252-262
栏目:
资源与环境
出版日期:
2024-08-20

文章信息/Info

Title:
Effects of microbial fertilizer on diversity and function of microorganisms in light rhizosphere matrix of borneol-type Cinnamomum burmannii
作者:
江颖超12李永泉1何波祥2钟泳林2魏军发3钟远芳4张谦2侯晨2
1.仲恺农业工程学院,广东广州 510550; 2.广东省林业科学研究院,广东广州 510520;3.广东森霖造绿有限公司,广东广州 510000; 4.紫金县林业科学研究所,广东紫金 517400
Author(s):
Jiang Yingchaoet al
关键词:
阴香微生物菌肥α多样性土壤功能基因表达量qPCR芯片分析
Keywords:
-
分类号:
S144;S792.23
DOI:
-
文献标志码:
A
摘要:
以2年生龙脑型阴香(Cinnamomum burmannii)轻基质苗为对象,采用微生物菌肥分别处理3、6个月,用16S测序技术、qPCR芯片技术研究轻基质微生物群落结构和轻基质碳、氮、磷、硫相关功能基因表达量的变化。结果表明,施用菌肥3个月后可显著提升阴香根际土壤微生物中某些细菌(如疣微菌门、拟杆菌门、髌骨细菌门、绿弯菌门)的相对丰度;施用菌肥6个月后可显著提高变形菌门、酸杆菌门的相对丰度。qPCR芯片分析结果表明,施用菌肥前后碳固定、氮循环和磷循环相关基因的相对表达量显著提升。综上,微生物菌肥的施用能改变龙脑型阴香根际轻基质微生物的群落结构与功能,显著提高龙脑型阴香根际轻基质氮、磷、碳相关功能基因的相对丰度,促进轻基质氮、磷、碳元素的利用,从而为阴香苗的培育提供新思路和理论基础。
Abstract:
-

参考文献/References:

[1]邱国俊. 观赏与经济兼优树种:阴香[J]. 广东园林,1989,11(1):40.
[2]李毓敬,朱亮锋,陆碧瑶,等. 天然右旋龙脑新资源:梅片树的研究[J]. 植物学报,1987,29(5):527-531.
[3]吴硕文,邹本革,唐丽华,等. 氟苯尼考与天然冰片联用体外抑菌效果研究[J]. 黑龙江畜牧兽医,2017(8):166-167.
[4]Wang J Y,Dong X Y,Yu Z W,et al. Borneol inhibits CD+T cells proliferation by down-regulating miR-26a and miR-142-3p to attenuate asthma[J]. International Immunopharmacology,2021,90:107223.
[5]Bansod S,Chilvery S,Saifi M A,et al. Borneol protects against cerulein-induced oxidative stress and inflammation in acute pancreatitis mice model[J]. Environmental Toxicology,2021,36(4):530-539.
[6]林海燕,于佳宁. 冰硝散外敷配合常规方法治疗下肢深静脉血栓形成40例[J]. 江苏中医药,2008,40(11):93.
[7]刘惠洁. 冰硝散外敷治疗下肢深静脉血栓形成患肢水肿的疗效观察[J]. 中国现代医生,2010,48(8):127,150.
[8]肇丽梅,何晓静,刘玉兰. 冰片注射液对小鼠脑缺血再灌注后学习和记忆行为的影响[J]. 华西药学杂志,2006,21(1):60-62.
[9]倪彩霞,曾南,苟玲,等. 芳香开窍药对脑缺血再灌注损伤大鼠保护作用机制的研究[J]. 中药药理与临床,2011,27(5):65-68.
[10]沈鹏英,程绍民,付丝羽,等. 醒脑静注射液在急性脑梗死中的应用[J]. 江西中医药大学学报,2020,32(6):113-115.
[11]文静. 开窍药对永久性局灶性脑缺血模型大鼠神经血管单元的保护机制研究[D]. 成都:成都中医药大学,2017.
[12]樊亚梅,王立映,王建,等. 3种冰片防治给药对AMI模型大鼠的心肌保护作用[J]. 中国实验方剂学杂志,2020,26(6):64-72.
[13]马青,马蕊,靳保龙,等. 天然冰片资源研究进展[J]. 中国中药杂志,2021,46(1):57-61.
[14]尚坤,李敬文,常美月,等. 中药冰片药理作用研究进展[J]. 吉林中医药,2018,38(4):439-441.
[15]刘纪爱,束爱萍,刘光荣,等. 施肥影响土壤性状和微生物组的研究进展[J]. 生物技术通报,2019,35(9):21-28.
[16]冼康华,苏江,付传明,等. 不同菌肥对华重楼根际土壤微生物多样性及理化性质的影响[J]. 广西科学,2021,28(6):616-625.
[17]刘芳,汪航飞,蒲春燕,等. 不同施肥对葡萄苗根际微生物量、土壤酶活性和生理的影响[J]. 四川农业大学学报,2023,41(2):318-324.
[18]游偲,张立猛,计思贵,等. 枯草芽孢杆菌菌剂对烟草根际土壤细菌群落的影响[J]. 应用生态学报,2014,25(11):3323-3330.
[19]李丹,黄福墩,黄铭星,等. 生物菌肥对桂花移栽苗生长的影响[J]. 森林与环境学报,2015,35(3):261-264.
[20]孙慧,吴中能,苗婷婷,等. 不同施肥处理对杨树林地土壤微生物群落的影响[J]. 中国农学通报,2023,39(2):36-43.
[21]郜春花,张强,卢朝东,等. 选用解磷菌剂改善缺磷土壤磷素的有效性[J]. 农业工程学报,2005,21(5):56-59.
[22]戴建军,刘宏宇. 生物磷肥对生菜、小白菜生长及N、P、K养分积累的影响[J]. 东北农业大学学报,2001,32(3):248-251.
[23]李保会. 复合微生物菌肥对连作草莓矿质养分吸收及产量的影响[J]. 河北农业大学学报,2007,30(3):44-47.
[24]刘丽丽,李淑高. PK菌肥的菌种筛选及应用研究[J]. 南开大学学报(自然科学版),1994,27(3):82-86.
[25]李广,李晓芬,易兰花. 拮抗菌枯草芽孢杆菌1151及其所产抗菌肽对辣椒采后软腐病的控制作用[J]. 食品与发酵工业,2023,49(10):78-84.
[26]Kinsella K,Schulthess C P,Morris T F,et al. Rapid quantification of Bacillus subtilis antibiotics in the rhizosphere[J]. Soil Biology and Biochemistry,2009,41(2):374-379.
[27]宫安东,孔宪巍,翟新可,等. 枯草芽孢杆菌WY8-7的溶磷、抑菌及促生长作用[J]. 南京农业大学学报,2019,42(4):697-705.
[28]解玉萌,田相利,赵坤,等. 两株海水氮降解菌的分离鉴定及其无机氮去除特性初步研究[J]. 中国海洋大学学报(自然科学版),2019,49(增刊1):33-44.
[29]林斌,黄菊青,官雪芳,等. 解淀粉芽孢杆菌液体肥在茶叶上的应用研究[J]. 福建农业学报,2019,34(10):1173-1178.
[30]李红晓,张殿朋,卢彩鸽,等. 生防解淀粉芽孢杆菌(Bacillus amyloliquefaciens)最新研究进展[J]. 微生物学杂志,2016,36(2):87-92.
[31]何波祥,曾令海,连辉明,等. 一种阔叶树轻基质育苗的基质配方:CN104737890B[P]. 2017-12-12.
[32]Zheng B X,Zhu Y G,Sardans J,et al. QMEC:a tool for high-throughput quantitative assessment of microbial functional potential in C,N,P,and S biogeochemical cycling[J]. Science China Life Sciences,2018,61(12):1451-1462.
[33]Edgar R C. UPARSE:highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods,2013,10:996-998.
[34]Chen H B,Boutros P C. VennDiagram:a package for the generation of highly-customizable Venn and Euler diagrams in R[J]. BMC Bioinformatics,2011,12:35.
[35]Parks D H,Tyson G W,Hugenholtz P,et al. STAMP:statistical analysis of taxonomic and functional profiles[J]. Bioinformatics,2014,30(21):3123-3124.
[36]Tang Q Y,Zhang C X. Data Processing System (DPS) software with experimental design,statistical analysis and data mining developed for use in entomological research[J]. Insect Science,2013,20(2):254-260.
[37]Causey B D. Parametric estimation of the number of classes in a population[J]. Journal of Applied Statistics,2002,29(6):925-934.
[38]Chao A,Yang M C K. Stopping rules and estimation for recapture debugging with unequal failure rates[J]. Biometrika,1993,80(1):193-201.
[39]Shannon C E. A mathematical theory of communication[J]. The Bell System Technical Journal,1948,27(3):379-423.
[40]Simpson E H. Measurement of diversity[J]. Nature,1949,163:688.
[41]贺纪正,李晶,郑袁明. 土壤生态系统微生物多样性-稳定性关系的思考[J]. 生物多样性,2013,21(4):412-421.
[42]陆雅海,傅声雷,褚海燕,等. 全球变化背景下的土壤生物学研究进展[J]. 中国科学基金,2015,29(1):19-24.
[43]Hermans S M,Buckley H L,Case B S,et al. Bacteria as emerging indicators of soil condition[J]. Applied and Environmental Microbiology,2016,83(1):e02826-e02816.
[44]任嘉红,李浩,刘辉,等. 吡咯伯克霍尔德氏菌JK-SH007对杨树根际微生物数量及功能多样性的影响[J]. 林业科学,2016,52(5):126-133.
[45]Carini P,Marsden P J,Leff J W,et al. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity[J]. Nature Microbiology,2016,2:16242.
[46]Maestre F T,Delgado-Baquerizo M,Jeffries T C,et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands[J]. Proceedings of the National Academy of Sciences of the USA,2015,112(51):15684-15689.
[47]Tedersoo L. Correspondence:analytical flaws in a continental-scale forest soil microbial diversity study[J]. Nature Communications,2017,8:15572.
[48]Wu S C,Cao Z H,Li Z G,et al. Effects of biofertilizer containing N-fixer,P and K solubilizers and AM fungi on maize growth:a greenhouse trial[J]. Geoderma,2005,125(1/2):155-166.
[49]Murphy D V,Stockdale E A,Brookes P C,et al. Impact of microorganisms on chemical transformations in soil[M]//Soil Biological Fertility.Dordrecht:Springer,2007:37-59.
[50]Abbass Z,Okon Y. Plant growth promotion by Azotobacter paspali in the rhizosphere[J]. Soil Biology and Biochemistry,1993,25(8):1075-1083.
[51]陈建明,葛顺峰,沙建川,等. 微生物菌肥促进苹果花脸病植株氮素吸收和果实增产[J]. 植物营养与肥料学报,2017,23(5):1296-1302.
[52]韩腾,张立猛,高加明,等. 枯草芽孢杆菌(Bacillus subtilis)Tpb55灌根与烟草根围细菌多样性变化的相关性[J]. 微生物学报,2016,56(5):835-845.
[53]Chen X H,Koumoutsi A,Scholz R,et al. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42[J]. Nature Biotechnology,2007,25:1007-1014.
[54]Saechow S,Thammasittirong A,Kittakoop P,et al. Antagonistic activity against dirty panicle rice fungal pathogens and plant growth-promoting activity of Bacillus amyloliquefaciens BAS23[J]. Journal of Microbiology and Biotechnology,2018,28(9):1527-1535.
[55]Wu Y C,Zhou J Y,Li C G,et al. Antifungal and plant growth promotion activity of volatile organic compounds produced by Bacillus amyloliquefaciens[J]. Microbiology Open,2019,8(8):e00813.
[56]Luo L,Zhao C Z,Wang E T,et al. Bacillus amyloliquefaciens as an excellent agent for biofertilizer and biocontrol in agriculture:an overview for its mechanisms[J]. Microbiological Research,2022,259:127016.
[57]Li Q,Xing Y N,Fu X W,et al. Biochemical mechanisms of rhizospheric Bacillus subtilis-facilitated phytoextraction by alfalfa under cadmium stress-microbial diversity and metabolomics analyses[J]. Ecotoxicology and Environmental Safety,2021,212:112016.
[58]Neilson J W,Quade J,Ortiz M,et al. Life at the hyperarid margin:novel bacterial diversity in arid soils of the Atacama Desert,Chile[J]. Extremophiles,2012,16(3):553-566.
[59]李雨桐,刘坤,柏宏成,等. 设施种植下不同类型土壤微生物群落的响应机制[J]. 环境影响评价,2022,44(1):85-89,96.
[60]de Bruyn J M,Nixon L T,Fawaz M N,et al. Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil[J]. Applied and Environmental Microbiology,2011,77(17):6295-6300.
[61]Fierer N,Bradford M A,Jackson R B. Toward an ecological classification of soil bacteria[J]. Ecology,2007,88(6):1354-1364.
[62]Li W X,Zhang Y P,Mao W,et al. Functional potential differences between Firmicutes and Proteobacteria in response to manure amendment in a reclaimed soil[J]. Canadian Journal of Microbiology,2020,66(12):689-697.
[63]Challacombe J F,Eichorst S A,Hauser L,et al. Biological consequences of ancient gene acquisition and duplication in the large genome of Candidatus Solibacter usitatus Ellin6076[J]. PLoS One,2011,6(9):e24882.
[64]程扬,刘子丹,沈启斌,等. 秸秆生物炭施用对玉米根际和非根际土壤微生物群落结构的影响[J]. 生态环境学报,2018,27(10):1870-1877.
[65]Ventura M,Canchaya C,Tauch A,et al. Genomics of Actinobacteria:tracing the evolutionary history of an ancient phylum[J]. Microbiology and Molecular Biology Reviews,2007,71(3):495-548.
[66]Sul W J,Asuming-Brempong S,Wang Q,et al. Tropical agricultural land management influences on soil microbial communities through its effect on soil organic carbon[J]. Soil Biology and Biochemistry,2013,65:33-38.
[67]Ward N L,Challacombe J F,Janssen P H,et al. Three genomes from the Phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils[J]. Applied and Environmental Microbiology,2009,75(7):2046-2056.
[68]Kielak A M,Barreto C C,Kowalchuk G A,et al. The ecology of acidobacteria:moving beyond genes and genomes[J]. Frontiers in Microbiology,2016,7:744.
[69]Akter M,Deroo H,de Grave E,et al. Link between paddy soil mineral nitrogen release and iron and manganese reduction examined in a rice pot growth experiment[J]. Geoderma,2018,326:9-21.
[70]Dobrovolskaya T G,Zvyagintsev D G,Chernov I Y,et al. The role of microorganisms in the ecological functions of soils[J]. Eurasian Soil Science,2015,48(9):959-967.
[71]Cao Y B,Wang X,Zhang X Y,et al. Nitrifier denitrification dominates nitrous oxide production in composting and can be inhibited by a bioelectrochemical nitrification inhibitor[J]. Bioresource Technology,2021,341:125851.
[72]Bengtsson G,Bengtson P,Mnsson K F. Gross nitrogen mineralization-,immobilization-,and nitrification rates as a function of soil C/N ratio and microbial activity[J]. Soil Biology and Biochemistry,2003,35(1):143-154.
[73]Kuypers M M M,Marchant H K,Kartal B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology,2018,16:263-276.
[74]曾广娟,冯阳,吴舒,等. 有机种植与常规种植蔬菜地土壤细菌群落多样性分析[J]. 江苏农业科学,2023,51(7):197-205.
[75]汪香君,姜美彤,李森,等. 玉米根际微生物氮磷转化的功能基因组学分析[J]. 环境科学,2023,44(12):7014-7023.
[76]Kang S M,Radhakrishnan R,Lee K E,et al. Mechanism of plant growth promotion elicited by Bacillu ssp. LKE15 in oriental melon[J]. Acta Agriculturae Scandinavica(Section B:Soil & Plant Science),2015,65(7):637-647.
[77]Kuan K B,Othman R,Abdul Rahim K,et al. Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth,nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions[J]. PLoS One,2016,11(3):e0152478.
[78]郭俊昇,吴宇坤. 浅析影响根际土壤碳循环的相关因素[J]. 南方农业,2023,17(2):254-257.
[79]Bar-Even A,Noor E,Milo R. A survey of carbon fixation pathways through a quantitative lens[J]. Journal of Experimental Botany,2012,63(6):2325-2342.
[80]Berg I A. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways[J]. Applied and Environmental Microbiology,2011,77(6):1925-1936.
[81]Liu Z. Metagenomic and 13C tracing evidence for autotrophic atmospheric carbon absorption in a semiarid desert[J]. Soil Biology and Biochemistry,2018,125:156-166.
[82]于鉴兰. 若尔盖泥炭地土壤微生物群落结构及碳氮磷循环功能基因分布特征[D]. 雅安:四川农业大学,2022:1-95.
[83]Maier S,Kratz A M,Weber J,et al. Water-driven microbial nitrogen transformations in biological soil crusts causing atmospheric nitrous acid and nitric oxide emissions[J]. The ISME Journal,2022,16(4):1012-1024.
[84]Yang G,Wang M,Chen H,et al. Responses of CO2 emission and pore water DOC concentration to soil warming and water table drawdown in Zoige Peatlands[J]. Atmospheric Environment,2017,152:323-329.

相似文献/References:

[1]杨爽,李海鹏,杨培鑑,等.微生物菌肥对草莓水分利用效率和产量的影响[J].江苏农业科学,2015,43(03):147.
 Yang Shuang,et al.Effects of bacterial manure on water use efficiency and yield of strawberry[J].Jiangsu Agricultural Sciences,2015,43(16):147.
[2]杨威,闫海霞,张贝贝,等.施用微生物菌肥“宁盾”对辣椒根围细菌多样性及土壤酶活性的影响[J].江苏农业科学,2018,46(09):99.
 Yang Wei,et al.Effects of microbial fertilizer “Ningdun” on bacteria diversity and enzyme activities in pepper rhizosphere soils[J].Jiangsu Agricultural Sciences,2018,46(16):99.
[3]张丽娜,塔秀成,黄伟,等.微生物菌肥对萝卜土壤微生物及酶活性的影响[J].江苏农业科学,2018,46(15):93.
 Zhang Lina,et al.Effects of microbial fertilizers on microorganism and enzymatic activity in radish soil[J].Jiangsu Agricultural Sciences,2018,46(16):93.
[4]王恒煦,刘泽平,徐伟慧,等.几种菌株对水稻的促生能力测定[J].江苏农业科学,2019,47(11):94.
 Wang Hengxu,et al.Determination of growth-promoting ability of several strains to rice[J].Jiangsu Agricultural Sciences,2019,47(16):94.
[5]张绪美,管永祥,沈文忠,等.不同施肥方式对设施土壤次生盐渍化及蕹菜生产的影响[J].江苏农业科学,2019,47(23):137.
 Zhang Xumei,et al.Effects of different fertilization methods on secondary salinization soil and water spinach production[J].Jiangsu Agricultural Sciences,2019,47(16):137.
[6]徐宗昌,李天卫,蔡宪杰,等.3种微生物菌肥对烤烟生长发育及烟叶产量和质量的影响[J].江苏农业科学,2020,48(16):108.
 Xu Zongchang,et al.Effects of three types of microbial fertilizers on growth,yield and quality of flue-cured tobacco[J].Jiangsu Agricultural Sciences,2020,48(16):108.
[7]董斌,张晖,黄永芳,等.樟树、阴香种子特性及贮藏研究[J].江苏农业科学,2021,49(4):110.
 Dong Bin,et al.Study on seed properties and storage of Cinnamomum camphora and Cinnamomum burmannii[J].Jiangsu Agricultural Sciences,2021,49(16):110.
[8]单体江,叶聪,冯冲,等.肉桂、樟树和阴香病害及其综合防治研究进展[J].江苏农业科学,2021,49(15):40.
 Shan Tijiang,et al.Research progress on diseases and comprehensive prevention of Cinnamomum cassia,Cinnamomum camphora and Cinnamomum burmani[J].Jiangsu Agricultural Sciences,2021,49(16):40.
[9]李茜,苏国权,危月辉,等.增施微生物菌肥对烤烟生长发育及烟叶品质的影响[J].江苏农业科学,2021,49(19):123.
 Li Qian,et al.Influences of microbial fertilizer on growth and quality of flue-cured tobacco[J].Jiangsu Agricultural Sciences,2021,49(16):123.
[10]董斌,黄永芳,张晖,等.樟树、阴香种子萌发及幼苗生长研究[J].江苏农业科学,2022,50(6):131.
 Dong Bin,et al.Study on seed germination and seedling growth of Cinnamomum camphora and Cinnamomum burmannii[J].Jiangsu Agricultural Sciences,2022,50(16):131.

备注/Memo

备注/Memo:
收稿日期:2023-09-03
基金项目:广东省林业科技创新项目(编号:2022KJCX006)。
作者简介:江颖超(1998—),男,江西宁都人,硕士研究生,主要从事林木遗传育种研究。E-mail:1251876369@qq.com。
通信作者:侯晨,博士,副研究员,主要从事木本精油树种的遗传育种研究。E-mail:houchen@sinogaf.cn。
更新日期/Last Update: 2024-08-20