|本期目录/Table of Contents|

[1]贾婧怡,陶心怡,魏艳欣,等.高温胁迫对不结球白菜幼苗生理指标的影响及相关基因筛选[J].江苏农业科学,2024,52(17):140-148.
 Jia Jingyi,et al.Impacts of high temperature stress on physiological indexes of non-heading Chinese cabbage seedlings and screening of related genes[J].Jiangsu Agricultural Sciences,2024,52(17):140-148.
点击复制

高温胁迫对不结球白菜幼苗生理指标的影响及相关基因筛选(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第17期
页码:
140-148
栏目:
园艺与林学
出版日期:
2024-09-05

文章信息/Info

Title:
Impacts of high temperature stress on physiological indexes of non-heading Chinese cabbage seedlings and screening of related genes
作者:
贾婧怡陶心怡魏艳欣年雨虹丁心茹朱波
安徽师范大学生命科学学院,安徽芜湖 241000
Author(s):
Jia Jingyiet al
关键词:
不结球白菜高温胁迫生理指标热激蛋白热激转录因子
Keywords:
-
分类号:
S634.301
DOI:
-
文献标志码:
A
摘要:
为探究不结球白菜不同品种对高温胁迫的生理响应和分子机制,以耐热品种SHI和热敏品种矮脚黄为试验材料,通过人工模拟高温(38 ℃)试验,分别在0、3、6、9、12 d测定幼苗叶绿素、类胡萝卜素、可溶性糖、可溶性蛋白、脯氨酸含量及POD、SOD活性等生理生化指标,并在0、6、24 h取样,选取热激转录因子和热激蛋白家族中的相关基因,通过实时荧光定量PCR试验来比较2个品种的高温胁迫相关基因的表达情况。结果表明:(1)矮脚黄的类胡萝卜素含量在高温胁迫3 d时较对照组显著下降了42.86%,而脯氨酸含量在高温胁迫6 d时是对照组的9.33倍,其POD活性在高温胁迫12 d是对照组活性的10.00倍,SOD活性在高温胁迫处理6 d时显著下降,与3 d时的活性相比降低了52.10%。(2)SHI的叶绿素含量在高温胁迫处理12 d时较对照组显著提高20.61%,与此同时,可溶性糖含量与3 d时相比显著上升了1.59 mg/g,可溶性蛋白含量与9 d时相比显著上升,为52.91 mg/g。(3)HSP基因家族中HSP57-1、HSP17.3、HSP57-2以及HSF基因家族中HSFA6b-1、HSFA6b-2、HSFA3、HSFA4a在耐热品种中整体上表达量更高。综上,耐热品种SHI和热敏品种矮脚黄在高温胁迫处理下类胡萝卜素、脯氨酸含量和酶(POD、SOD) 活性均有所波动,但矮脚黄比SHI波动更大。耐热品种的叶绿素、可溶性糖和可溶性蛋白含量在高温胁迫后期均呈明显上升趋势。HSP基因家族中HSP57-1、HSP17.3、HSP57-2以及HSF基因家族中HSFA6b-1、HSFA6b-2、HSFA3、HSFA4a为筛选出的耐热相关基因,可能在帮助不结球白菜抵御高温胁迫中发挥作用。
Abstract:
-

参考文献/References:

[1]侯喜林,李英,黄菲艺.不结球白菜(Brassica campestris ssp. chinensis)主要性状及育种技术的分子生物学研究新进展[J]. 园艺学报,2020,47(9):1663-1677.
[2]余长春,罗本钒,傅强,等. 不结球白菜遗传多样性分析以及耐热性鉴定[J]. 华中农业大学学报,2021,40(6):119-125.
[3]储思远,黄艳波,漆瑶,等. 微生物调控宿主植物的耐热性及其机制[J/OL]. 分子植物育种,2023:1-16(2023-02-03)[2024-07-16]. https://kns.cnki.net/kcms/detail/46.1068.S.20230202.1639.008.html.
[4]Sairam R K,Srivastava G C,Saxena D C. Increased antioxidant activity under elevated temperatures:a mechanism of heat stress tolerance in wheat genotypes[J]. Biologia Plantarum,2000,43(2):245-251.
[5]Polle A. Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling.Computer simulations as a step towards flux analysis[J]. Plant Physiology,2001,126(1):445-462.
[6]陈岩,岳丽杰,刘永红,等. 营养生长期持续高温处理对玉米叶片转录组及生化指标的影响[J]. 玉米科学,2022,30(4):48-55,61.
[7]徐海,宋波,顾宗福,等. 热胁迫对不结球白菜生理指标的影响[J]. 江苏农业科学,2020,48(13):138-143.
[8]Scharf K D,Berberich T,Ebersberger I,et al. The plant heat stress transcription factor (Hsf) family:structure,function and evolution[J]. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms,2012,1819(2):104-119.
[9]Haq S U,Khan A,Ali M,et al. Heat shock proteins:dynamic biomolecules to counter plant biotic and abiotic stresses[J]. International Journal of Molecular Sciences,2019,20(21):5321.
[10]楚宗丽,李亮杰,姬虹,等. 小麦Hsp70基因家族鉴定及蛋白互作网络分析[J]. 江苏农业科学,2022,50(10):37-44.
[11]Xu J Y,Xue C C,Xue D,et al. Overexpression of GmHsp90s,a heat shock protein 90 (Hsp90) gene family cloning from soybean,decrease damage of abiotic stresses in Arabidopsis thaliana[J]. PLoS One,2013,8(7):e69810.
[12]张泽,裴鑫,鲁仪增,等. 花楸树小热激蛋白23.8基因(SpHSP23.8)克隆与表达分析[J]. 植物资源与环境学报,2020,29(5):9-20.
[13]王明乐,朱旭君,王伟东,等. 茶树小分子量热激蛋白基因CsHSP17.2的克隆与表达分析[J]. 南京农业大学学报,2015,38(3):389-394.
[14]Kaur H,Petla B P,Kamble N U,et al. Differentially expressed seed aging responsive heat shock protein OsHSP18.2 implicates in seed vigor,longevity and improves germination and seedling establishment under abiotic stress[J]. Frontiers in Plant Science,2015,6:713.
[15]张华崇,闫振华,赵树琪,等. 二倍体棉花热激转录因子HSFs家族全基因组生物信息学分析[J]. 江苏农业科学,2017,45(20):35-42.
[16]Anfoka G,Moshe A D,Fridman L,et al. Tomato yellow leaf curl virus infection mitigates the heat stress response of plants grown at high temperatures[J]. Scientific Reports,2016,6:19715.
[17]Liu H C,Liao H T,Charng Y Y. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis[J]. Plant,Cell & Environment,2011,34(5):738-751.
[18]Nishizawa A,Yabuta Y,Yoshida E,et al. Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress[J]. The Plant Journal,2006,48(4):535-547.
[19]李合生.植物生理生化实验原理和技术[M]. 北京:高等教育出版社,2000.
[20]Livak K J,Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCT method[J]. Methods,2001,25(4):402-408.
[21]艾青,牟同敏. 水稻耐热性研究进展[J]. 湖北农业科学,2008,47(1):107-111.
[22]陆晨飞,高月霞,黄河,等. 植物类胡萝卜素代谢及调控研究进展[J]. 园艺学报,2022,49(12):2559-2578.
[23]周伟香,龚宁,李凯,等. 高温胁迫对金线兰生理特性影响的研究[J]. 贵州师范大学学报(自然科学版),2007,25(3):25-28.
[24]刘媛媛,滕中华,王三根,等. 高温胁迫对水稻可溶性糖及膜保护酶的影响研究[J]. 西南大学学报(自然科学版),2008,30(2):59-63.
[25]赵森,于江辉,肖国樱. 高温胁迫对爪哇稻剑叶光合特性和渗透调节物质的影响[J]. 生态环境学报,2013,22(1):110-115.
[26]陈秀晨,王士梅,朱启升,等. 水稻品种耐热性与相关生化指标的关联分析[J]. 农业环境科学学报,2010,29(9):1633-1639.
[27]叶陈亮,柯玉琴,陈伟. 大白菜耐热性的生理研究 Ⅲ.酶性和非酶性活性氧清除能力与耐热性[J]. 福建农业大学学报,1997(4):498-501.
[28]王志和,于丽艳,曹德航,等. 短期高温处理对大白菜几个生理指标的影响[J]. 西北农业学报,2005,14(3):82-85.
[29]辛松林,秦文,孙传红,等. 腐皮镰孢霉菌侵染及保鲜剂处理对秋葵相关抗性酶的影响[J]. 江苏农业学报,2018,34(5):1161-1168.
[30]谢晓金,李秉柏,申双和,等. 高温胁迫对扬稻6号剑叶生理特性的影响[J]. 中国农业气象,2009,30(1):84-87.
[31]卢琼琼,宋新山,严登华. 高温胁迫对大豆幼苗生理特性的影响[J]. 河南师范大学学报(自然科学版),2012,40(1):112-115,124.
[32]靳路真,王洋,张伟,等. 高温胁迫对不同耐性大豆品种生理生化的影响[J]. 大豆科学,2019,38(1):63-71.
[33]刘宇,宋希强,史佑海,等. 高温胁迫下海南杜鹃和白花杜鹃的生理响应比较分析[J]. 分子植物育种,2018,16(17):5827-5834.
[34]杜晓华,刘会超,崔向南,等. 水杨酸对大花三色堇幼苗耐热性的影响[J]. 广西植物,2016,36(6):728-734.
[35]李小玲,雒玲玲,华智锐. 高温胁迫下高山杜鹃的生理生化响应[J]. 西北农业学报,2018,27(2):253-259.
[36]Hu Y,Han Y T,Wei W,et al. Identification,isolation,and expression analysis of heat shock transcription factors in the diploid woodland strawberry Fragaria vesca[J]. Frontiers in Plant Science,2015,6:736.
[37]Al-Whaibi M H.Plant heat-shock proteins:a mini review[J]. Journal of King Saud University-Science,2011,23(2):139-150.
[38]Tian C,Zhang Z Y,Huang Y,et al. Functional characterization of the Pinellia ternata cytoplasmic classⅡ small heat shock protein gene PtsHSP17.2 via promoter analysis and overexpression in tobacco[J]. Plant Physiology and Biochemistry,2022,177:1-9.
[39]Sedaghatmehr M,Mueller-Roeber B,Balazadeh S. The plastid metalloprotease FtsH6 and small heat shock protein HSP21 jointly regulate thermomemory in Arabidopsis[J]. Nature Communications,2016,7:12439.
[40]Desai J S,Lawas L M F,Valente A M,et al. Warm nights disrupt transcriptome rhythms in field-grown rice panicles[J]. Proceedings of the National Academy of Sciences of the United States of America,2021,118(25):e2025899118.
[41]雷明娜,李晶. 小热休克蛋白HSP17.4与过氧化氢酶2互作调控其酶活性[J]. 北京农学院学报,2023,38(1):1-6.
[42]Sun X B,Sun C Y,Li Z G,et al. AsHSP17,a creeping bentgrass small heat shock protein modulates plant photosynthesis and ABA-dependent and independent signalling to attenuate plant response to abiotic stress[J]. Plant,Cell & Environment,2016,39(6):1320-1337.
[43]Poonia A K,Mishra S K,Sirohi P,et al. Overexpression of wheat transcription factor (TaHsfA6b) provides thermotolerance in barley[J]. Planta,2020,252(4):53.
[44]Schramm F,Larkindale J,Kiehlmann E,et al. A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis[J]. The Plant Journal,2008,53(2):264-274.

相似文献/References:

[1]张国芹,李静,牟建梅,等.秋季不结球白菜硝酸盐积累的基因型差异[J].江苏农业科学,2016,44(05):228.
 Zhang Guoqin,et al.Genotype differences of nitrate accumulation of autumn Chinese cabbage[J].Jiangsu Agricultural Sciences,2016,44(17):228.
[2]陈小锦,丛玮玮,陈永林,等.蚯蚓粪改良红壤的效果及对不结球白菜生长的影响[J].江苏农业科学,2016,44(08):248.
 Chen Xiaojin,et al.Effects of vermicompost on improvement of krasnozem and growth of non-heading pakchoi[J].Jiangsu Agricultural Sciences,2016,44(17):248.
[3]王夏,孙菲菲,郦月红,等.不结球白菜同源四倍体种质创建及特性研究[J].江苏农业科学,2016,44(01):173.
 Wang Xia,et al.Study on creation of autotetraploid germplasm of non-heading Chinese cabbage and its characteristics[J].Jiangsu Agricultural Sciences,2016,44(17):173.
[4]毕云飞,苏小俊,蒋芳玲,等.外源水杨酸对高温胁迫下甘蓝幼苗生长及生理特性的影响[J].江苏农业科学,2015,43(08):133.
 Bi Yunfei,et al.Effects of exogenous salicylic acid on growth and physiological characteristics of cabbage seedlings under the stress of high temperature[J].Jiangsu Agricultural Sciences,2015,43(17):133.
[5]苏 南,苏小俊,蒋芳玲,等.表油菜素内酯对高温胁迫下甘蓝幼苗抗逆性的影响[J].江苏农业科学,2015,43(07):137.
 Su Nan,et al.Effect of epiBR on stress resistance of cabbage seedlings under high temperature stress[J].Jiangsu Agricultural Sciences,2015,43(17):137.
[6]宋伟,张迎颖,刘丽珠,等.肥料化水葫芦压榨渣对不结球白菜产量和品质的影响[J].江苏农业科学,2014,42(06):178.
 Song Wei,et al.Effects of water hyacinth press residues manure on yield and quality of non-heading Chinese cabbage[J].Jiangsu Agricultural Sciences,2014,42(17):178.
[7]姜宗庆,汤庚国,肖文华,等.茉莉酸对高温胁迫下银杏盆栽苗叶片生理特性的影响[J].江苏农业科学,2014,42(06):211.
 Jiang Zongqing,et al.Effect of exogenous jasmonic acids on physiological characteristics of ginkgo potted seedling leaves under high temperature stress[J].Jiangsu Agricultural Sciences,2014,42(17):211.
[8]耶兴元.茉莉酸甲酯对高温胁迫下猕猴桃苗膜脂过氧化及相关抗氧化酶的影响[J].江苏农业科学,2015,43(05):173.
 Ye Xingyuan.Effects of methyl jasmonate on membrane lipid peroxidation and related antioxidant enzymes of kiwifruit seedlings under high temperature stress[J].Jiangsu Agricultural Sciences,2015,43(17):173.
[9]刘怀珠,杨洪兵.谷氨酸和天冬氨酸对高温胁迫下荞麦幼苗的生理效应[J].江苏农业科学,2015,43(01):108.
 Liu Huaizhu,et al.Physiological effects of glutamic acid and aspartic acid on buckwheat seedlings under high temperature stress[J].Jiangsu Agricultural Sciences,2015,43(17):108.
[10]郭亚男,李仕裕,王发国,等.28种优良木本花卉耐热性[J].江苏农业科学,2016,44(07):242.
 Guo Yanan,et al.Heat tolerance of 28 species of ornamental trees in Guangdong Province[J].Jiangsu Agricultural Sciences,2016,44(17):242.
[11]娄丽娜,蒋利春,孙莉,等.持续高温胁迫对不结球白菜生理指标的影响[J].江苏农业科学,2015,43(06):161.
 Lou Lina,et al.Effect of continue high temperature on physiological indices of Brassica campestris ssp. chinensis L.[J].Jiangsu Agricultural Sciences,2015,43(17):161.

备注/Memo

备注/Memo:
收稿日期:2023-09-20
基金项目:大学生创新训练项目(编号:S202110370088)。
作者简介:贾婧怡(1998—),女,山西晋中人,硕士研究生,主要从事园艺植物逆境胁迫研究。E-mail:1005832854@qq.com。
通信作者:朱波,博士,副教授,主要从事园艺植物逆境胁迫研究。E-mail:zhubo_ybdx119@163.com。
更新日期/Last Update: 2024-09-05