[1]冯娟,刘刚,司永胜,等. 苹果采摘机器人激光视觉系统的构建[J]. 农业工程学报,2013,29(增刊1):32-37.
[2]Lehnert C,Sa I,McCool C,et al. Sweet pepper pose detection and grasping for automated crop harvesting[C]//2016 IEEE International Conference on Robotics and Automation. Stockholm,Sweden.IEEE,2016:2428-2434.
[3]王丹丹,宋怀波,何东健. 苹果采摘机器人视觉系统研究进展[J]. 农业工程学报,2017,33(10):59-69.
[4]王卓,王健,王枭雄,等. 基于改进YOLO v4的自然环境苹果轻量级检测方法[J]. 农业机械学报,2022,53(8):294-302.
[5]景亮,王瑞,刘慧,等. 基于双目相机与改进YOLO v3算法的果园行人检测与定位[J]. 农业机械学报,2020,51(9):34-39,25.
[6]何进荣,石延新,刘斌,等. 基于DXNet模型的富士苹果外部品质分级方法研究[J]. 农业机械学报,2021,52(7):379-385.
[7]薛勇,王立扬,张瑜,等. 基于GoogLeNet深度迁移学习的苹果缺陷检测方法[J]. 农业机械学报,2020,51(7):30-35.
[8]Turan M,Almalioglu Y,Araujo H,et al. Deep EndoVO:a recurrent convolutional neural network (RCNN) based visual odometry approach for endoscopic capsule robots[J]. Neurocomputing,2018,275:1861-1870.
[9]Ren Y,Zhu C R,Xiao S P. Object detection based on fast/faster RCNN employing fully convolutional architectures[J]. Mathematical Problems in Engineering,2018,2018:3598316.
[10]Sun X D,Wu P C,Hoi S C H. Face detection using deep learning:an improved faster RCNN approach[J]. Neurocomputing,2018,299:42-50.
[11]Gao F F,Fu L S,Zhang X,et al. Multi-class fruit-on-plant detection for apple in SNAP system using Faster R-CNN[J]. Computers and Electronics in Agriculture,2020,176:105634.
[12]Yang J,He W Y,Zhang T L,et al. Research on subway pedestrian detection algorithms based on SSD model[J]. IET Intelligent Transport Systems,2020,14(11):1491-1496.
[13]Redmon J,Divvala S,Girshick R,et al. You only look once:unified,real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE,2016:779-788.
[14]罗志聪,李鹏博,宋飞宇,等. 嵌入式设备的轻量化百香果检测模型[J]. 农业机械学报,2022,53(11):262-269,322.
[15]张恩宇,成云玲,胡广锐,等. 基于SSD算法的自然条件下青苹果识别[J]. 中国科技论文,2020,15(3):274-281.
[16]汪颖,王峰,李玮,等. 用于复杂环境下果蔬检测的改进YOLO v5算法研究[J]. 中国农机化学报,2023,44(1):185-191.
[17]熊俊涛,韩咏林,王潇,等. 基于YOLO v5-Lite的自然环境木瓜成熟度检测方法[J]. 农业机械学报,2023,54(6):243-252.
[18]董丽君,曾志高,易胜秋,等. 基于YOLO v5的遥感图像目标检测[J]. 湖南工业大学学报,2022,36(3):44-50.
[19]Liu S,Qi L,Qin H F,et al. Path aggregation network for instance segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018:8759-8768.
[20]Lin T Y,Dollár P,Girshick R,et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE,2017:936-944.
[21]Yao T,Zhang Q,Wu X Y,et al. Image recognition method of defective button battery base on improved MobileNetV1[C]//Wang Y,Li X,Peng Y.Chinese Conference on Image and Graphics Technologies.Singapore:Springer,2020:313-324.
[22]Hu J,Shen L,Sun G. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018:7132-7141.
[23]Chen J R,Kao S H,He H,et al. Run,dont walk:chasing higher FLOPS for faster neural networks[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver:IEEE,2023:12021-12031.
[24]Han K,Wang Y H,Tian Q,et al. GhostNet:more features from cheap operations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle:IEEE,2020:1580-1589.
[25]朱瑞鑫,杨福兴. 运动场景下改进YOLO v5小目标检测算法[J]. 计算机工程与应用,2023,59(10):196-203.
[1]龙阳,肖小玲.基于多注意力机制的苹果叶部病害检测方法[J].江苏农业科学,2023,51(23):178.
Long Yang,et al.Apple leaf disease recognition method based on multi-attention mechanism[J].Jiangsu Agricultural Sciences,2023,51(17):178.
[2]赵方,左官芳,顾思睿,等.基于改进YOLO v5s的温室番茄检测模型轻量化研究[J].江苏农业科学,2024,52(8):200.
Zhao Fang,et al.Lightweight research of greenhouse tomato detection model based on improved YOLO v5s[J].Jiangsu Agricultural Sciences,2024,52(17):200.
[3]高泉,刘笠溶,张洁,等.基于ActNN-YOLO v5s-RepFPN的番茄病害识别及系统设计[J].江苏农业科学,2024,52(20):220.
Gao Quan,et al.Tomato disease identification and system design based on ActNN-YOLO v5s-RepFPN[J].Jiangsu Agricultural Sciences,2024,52(17):220.
[4]贺洪江,刘毅祥,王双友.基于改进YOLO v5s的叶菜病虫害检测算法研究[J].江苏农业科学,2025,53(5):244.
He Hongjiang,et al.Study on foliage vegetable disease and pest detection algorithm based on improved YOLO v5s[J].Jiangsu Agricultural Sciences,2025,53(17):244.
[5]史鹏涛,田政伟,李晓泽,等.基于改进YOLO v5s算法的红枣缺陷检测与分拣方法[J].江苏农业科学,2025,53(5):83.
Shi Pengtao,et al.Defect detection and sorting method of jujube based on improved YOLO v5s algorithm[J].Jiangsu Agricultural Sciences,2025,53(17):83.