[1]国家统计局. 国家统计局关于2022年粮食产量数据的公告[J]. 现代面粉工业,2023,37(1):18.
[2]章秀福,王丹英,方福平,等. 中国粮食安全和水稻生产[J]. 农业现代化研究,2005,26(2):85-88.
[3]常好雪,蔡晓斌,陈晓玲,等. 基于实测光谱的植被指数对水稻叶面积指数的响应特征分析[J]. 光谱学与光谱分析,2018,38(1):205-211.
[4]Gitelson A A,Via A,Arkebauer T J,et al. Remote estimation of leaf area index and green leaf biomass in maize canopies[J]. Geophysical Research Letters,2003,30(5):1248.
[5]韩焕豪,崔远来,时元智,等. SunScan冠层分析仪在水稻叶面积指数测量中的应用[J]. 灌溉排水学报,2015,34(8):44-48.
[6]于强,傅抱璞,姚克敏.水稻叶面积指数的普适增长模型[J]. 中国农业气象,1995(2):6-8.
[7]叶宏宝,孟亚利,汤亮,等. 水稻叶龄与叶面积指数动态的模拟研究[J]. 中国水稻科学,2008,22(6):625-630.
[8]刘杨,冯海宽,黄珏,等. 基于无人机高光谱影像的马铃薯株高和地上生物量估算[J]. 农业机械学报,2021,52(2):188-198.
[9]陈仲新,任建强,唐华俊,等. 农业遥感研究应用进展与展望[J]. 遥感学报,2016,20(5):748-767.
[10]王福民,黄敬峰,唐延林,等. 新型植被指数及其在水稻叶面积指数估算上的应用[J]. 中国水稻科学,2007,21(2):159-166.
[11]杭艳红,苏欢,于滋洋,等. 结合无人机光谱与纹理特征和覆盖度的水稻叶面积指数估算[J]. 农业工程学报,2021,37(9):64-71.
[12]孙玉婷,杨红云,王映龙,等. 基于支持向量机的水稻叶面积测定[J]. 江苏农业学报,2018,34(5):1027-1035.
[13]苏中滨,陆艺伟,谷俊涛,等. 改进的QGA-ELM算法水稻叶面积指数反演模型[J]. 光谱学与光谱分析,2021,41(4):1227-1233.
[14]申关望,祁玉良,鲁伟林,等. 施氮量对杂交水稻D优3138干物质转运与稻米品质的影响[J]. 贵州农业科学,2017,45(2):23-25.
[15]刘振波,葛海啸,葛云健,等. 冠层集聚指数对水稻LAI测量精度的影响[J]. 江苏农业科学,2018,46(24):352-354.
[16]陈惠哲,朱德峰,林贤青,等. 穗肥施氮量对水稻剑叶生长及披垂的影响[J]. 西南农业学报,2007,20(6):1246-1249.
[17]刘镕源,王纪华,杨贵军,等. 冬小麦叶面积指数地面测量方法的比较[J]. 农业工程学报,2011,27(3):220-224.
[18]田庆久,闵祥军. 植被指数研究进展[J]. 地球科学进展,1998,13(4):327-333.
[19]Ahamed T,Tian L,Zhang Y,et al. A review of remote sensing methods for biomass feedstock production[J]. Biomass and Bioenergy,2011,35(7):2455-2469.
[20]Hunt E R Jr,Daughtry C S T,Eitel J U H,et al. Remote sensing leaf chlorophyll content using a visible band index[J]. Agronomy Journal,2011,103(4):1090-1099.
[21]Vincini M,Frazzi E,DAlessio P. A broad-band leaf chlorophyll vegetation index at the canopy scale[J]. Precision Agriculture,2008,9(5):303-319.
[22]Xu L Y,Xie X D,Li S. Correlation analysis of the urban heat island effect and the spatial and temporal distribution of atmospheric particulates using TM images in Beijing[J]. Environmental Pollution,2013,178:102-114.
[23]Dorigo W A,Zurita-Milla R,de Wit A J W,et al. A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling[J]. International Journal of Applied Earth Observation and Geoinformation,2007,9(2):165-193.
[24]Jiang Z,Huete A,Didan K,et al. Development of a two-band enhanced vegetation index without a blue band[J]. Remote Sensing of Environment,2008,112(10):3833-3845.
[25]Gobron N,Pinty B,Verstraete M M,et al. Advanced vegetation indices optimized for up-coming sensors:design,performance,and applications[J]. IEEE Transactions on Geoscience and Remote Sensing,2000,38(6):2489-2505.
[26]le Maire G,Franois C,Dufrêne E. Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements[J]. Remote Sensing of Environment,2004,89(1):1-28.
[27]Pu R L,Gong P,Yu Q. Comparative analysis of EO-1 ALI and Hyperion,and landsat ETM+ data for mapping forest crown closure and leaf area index[J]. Sensors,2008,8(6):3744-3766.
[28]Haboudane D. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies:modeling and validation in the context of precision agriculture[J]. Remote Sensing of Environment,2004,90(3):337-352.
[29]Becker-Reshef I,Vermote E,Lindeman M,et al. A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data[J]. Remote Sensing of Environment,2010,114(6):1312-1323.
[30]Wu C Y,Niu Z,Tang Q,et al. Estimating chlorophyll content from hyperspectral vegetation indices:modeling and validation[J]. Agricultural and Forest Meteorology,2008,148(8/9):1230-1241.
[31]Roujean J L,Breon F M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements[J]. Remote Sensing of Environment,1995,51(3):375-384.
[32]Birth G S,McVey G R. Measuring the color of growing turf with a reflectance Spectrophotometer1[J]. Agronomy Journal,1968,60(6):640-643.
[33]Gitelson A A. Wide Dynamic Range Vegetation Index for remote quantification of biophysical characteristics of vegetation[J]. Journal of Plant Physiology,2004,161(2):165-173.
[34]Broge N H,Leblanc E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density[J]. Remote Sensing of Environment,2001,76(2):156-172.
[35]Gitelson A A,Kaufman Y J,Stark R,et al. Novel algorithms for remote estimation of vegetation fraction[J]. Remote Sensing of Environment,2002,80(1):76-87.
[36]Herrmann I,Pimstein A,Karnieli A,et al. LAI assessment of wheat and potato crops by VENμS and Sentinel-2 bands[J]. Remote Sensing of Environment,2011,115(8):2141-2151.
[37]Karal . Performance comparison of different kernel functions in SVM for different k value in k-fold cross-validation[C]//2020 Innovations in Intelligent Systems and Applications Conference (ASYU).Istanbul:IEEE,2020:1-5.
[38]秦占飞,申健,谢宝妮,等. 引黄灌区水稻叶面积指数的高光谱估测模型[J]. 武汉大学学报(信息科学版),2017,42(8):1159-1166.
[39]李艳大,孙滨峰,曹中盛,等. 基于作物生长监测诊断仪的双季稻叶面积指数监测模型[J]. 农业工程学报,2020,36(10):141-149.
[40]田广丽. 氮水平及栽培密度影响水稻生产能力的机制研究[D]. 南京:南京农业大学,2016.
[41]杨洪,李旭毅,卿发红,等. 不同产量水平水稻群体光合特性和产量构成差异[J]. 江苏农业学报,2023,39(5):1089-1096.
[42]Liu W D,Xiang Y Q,Zheng L F,et al. Relationship between rice LAI,CH.D,and hyperspectral data[C]//Multispectral and Hyperspectral Remote Sensing Instruments and Applications.Hangzhou,China:SPIE,2003:352-359.
[43]张笑宇,沈超,蔺琛皓,等. 面向机器学习模型安全的测试与修复[J]. 电子学报,2022,50(12):2884-2918.
[1]马旭俊,刘春娟,吕世博,等.绿色荧光蛋白基因在水稻遗传转化中的应用[J].江苏农业科学,2013,41(04):35.
[2]李岳峰,居立海,张来运,等.水分胁迫下丛枝菌根对水稻/绿豆间作系统
作物生长和氮磷吸收的影响[J].江苏农业科学,2013,41(04):58.
[3]崔月峰,孙国才,王桂艳,等.不同施氮水平和前氮后移措施对水稻产量
及氮素利用率的影响[J].江苏农业科学,2013,41(04):66.
[4]张其蓉,宋发菊,田进山,等.长江中下游稻区水稻区域试验品种抗稻瘟病鉴定与评价[J].江苏农业科学,2013,41(04):92.
[5]王麒,张小明,卞景阳,等.不同插秧密度对黑龙江省第二积温带水稻产量及产量构成的影响[J].江苏农业科学,2013,41(05):60.
Wang Qi,et al.Effect of different transplanting density on yield and yield component of rice in second temperature zone of Heilongjiang Province[J].Jiangsu Agricultural Sciences,2013,41(20):60.
[6]张国良,张森林,丁秀文,等.基质厚度和含水量对水稻育秧的影响[J].江苏农业科学,2013,41(05):62.
Zhang Guoliang,et al.Effects of substrate thickness and water content on growth of rice seedlings[J].Jiangsu Agricultural Sciences,2013,41(20):62.
[7]赵忠宝,朱清海.稻-蟹-鳅生态系统的能值分析[J].江苏农业科学,2013,41(05):349.
Zhao Zhongbao,et al.Emergy analysis of paddy-crab-loach ecosystem[J].Jiangsu Agricultural Sciences,2013,41(20):349.
[8]杨红福,姚克兵,束兆林,等.甲氧基丙烯酸酯类杀菌剂对水稻恶苗病的田间药效[J].江苏农业科学,2014,42(12):166.
Yang Hongfu,et al.Field efficacy of strobilurin fungicides against rice bakanae disease[J].Jiangsu Agricultural Sciences,2014,42(20):166.
[9]唐成,陈露,安敏敏,等.稻瘟病诱导水稻幼苗叶片氧化还原系统的特征谱变化[J].江苏农业科学,2014,42(12):141.
Tang Cheng,et al.Characteristic spectral changes of redox homeostasis system in rice seedling leaves induced by rice blast[J].Jiangsu Agricultural Sciences,2014,42(20):141.
[10]万云龙.优质水稻—春甘蓝轮作高效栽培模式[J].江苏农业科学,2014,42(12):90.
Wan Yunlong.Efficient cultivation mode of high quality rice-spring cabbage rotation[J].Jiangsu Agricultural Sciences,2014,42(20):90.
[11]孙星星,王凯,李红阳,等.航空超低量喷雾技术在水稻生产上应用现状、存在问题及发展趋势[J].江苏农业科学,2020,48(13):29.
Sun Xingxing,et al.Application status, existing problems and development trends of aviation ultra-low volume spray technology in rice production[J].Jiangsu Agricultural Sciences,2020,48(20):29.