|本期目录/Table of Contents|

[1]李炳鑫,宋涛,高婕,等.基于YOLO v5模型的缺钙草莓叶片识别方法[J].江苏农业科学,2024,52(20):74-82.
 Li Bingxin,et al.Identification method of calcium-deficient strawberry leaves based on YOLO v5 model[J].Jiangsu Agricultural Sciences,2024,52(20):74-82.
点击复制

基于YOLO v5模型的缺钙草莓叶片识别方法(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第20期
页码:
74-82
栏目:
作物营养智能诊断
出版日期:
2024-10-20

文章信息/Info

Title:
Identification method of calcium-deficient strawberry leaves based on YOLO v5 model
作者:
李炳鑫 宋涛 高婕 李冬 高鹏 李仁杰 赵德傲
河北工业大学电子信息工程学院,天津 300401
Author(s):
Li Bingxinet al
关键词:
YOLO v5小目标目标检测轻量化模型缺钙草莓
Keywords:
-
分类号:
TP391.41
DOI:
-
文献标志码:
A
摘要:
针对缺钙草莓叶片病害特征较小、病害尺度特征变换较大、传统的卷积神经网络模型对小目标的检测效果不佳等问题,提出一种基于YOLO v5模型的缺钙草莓叶片识别方法。该方法首先以YOLO v5模型为基础从其Backbone、Neck、损失函数等方面进行优化,提高其对缺钙草莓叶片病害特征的检测能力,并将优化后的网络模型命名为YOLO v5-Smix,再采用多种数据增强手段对已有数据集进行扩充,以保障后续卷积神经网络模型的训练。该方法将原有Backbone骨骼中的CSPDarknet53主干网络替换为以C2F模块为核心的Darknet-53网络,保留缺钙草莓叶片的小目标特征;在Neck特征融合层添加BiFPN结构,有效解决缺钙草莓叶片图像尺度特征变换较大的问题,同时增强网络多尺度特征融合能力;更换原本的损失函数CIoU为WIoU,进一步提高模型的检测效率及检测能力。依据模型评价指标,通过试验将YOLO v5-Smix网络与经典的Faster-RCNN、YOLO v3、YOLO v4、YOLO v5等4种卷积神经网络进行对比。结果表明,YOLO v5-Smix的识别精确度达89.1%,召回率达81.0%,平均精确度达78.8%,与Faster RCNN、YOLO v3、YOLO v4、YOLO v5相比,识别精确度均有提高,能够较精确地识别缺钙草莓叶片病害特征,完成小目标病害特征的检测任务。
Abstract:
-

参考文献/References:

[1]成玉波,包成友,成玉富. 草莓缺素症及其防治方法[J]. 现代农业科技,2007(3):34.
[2]孙圆龙,徐晓辉,宋涛,等. 高效运算网络在作物叶部病害识别中的研究[J]. 中国农机化学报,2021,42(7):156-161.
[3]刘庆飞,张宏立,王艳玲. 基于深度可分离卷积的实时农业图像逐像素分类研究[J]. 中国农业科学,2018,51(19):3673-3682.
[4]丁常宏,王守宇,高鹏. 基于SSD-MobileNet v1深度学习算法的药用植物叶片识别方法[J]. 江苏农业科学,2020,48(22):222-228.
[5]Hariri M,Avar E. Tipburn disorder detection in strawberry leaves using convolutional neural networks and particle swarm optimization[J]. Multimedia Tools and Applications,2022,81(8):11795-11822.
[6]林铭捷. 基于深度学习的春石斛生长状态识别的研究[D]. 广州:华南理工大学,2021.
[7]袁磊,唐海,陈彦蓉,等. 改进YOLO v5的复杂环境道路目标检测方法[J]. 计算机工程与应用,2023,59(16):212-222.
[8]许璧麒,马志强,宝财吉拉呼,等. 基于YOLO v5的高速公路小目标车辆逆行检测模型[J]. 国外电子测量技术,2022,41(11):146-153.
[9]王寅凯,曹磊,钱佳晨,等. 一种改进YOLO v5的多尺度像素林火识别算法[J]. 林业工程学报,2023,8(2):159-165.
[10]张利红,蔡敬菊. 基于轻量化YOLO v5算法的目标检测系统[J]. 计算机技术与发展,2022,32(11):134-139.
[11]杨文姬,胡文超,赵应丁,等. 基于改进YOLO v5植物病害检测算法研究[J]. 中国农机化学报,2023,44(1):108-115.
[12]朱香元,聂轰,周旭. 基于TPH-YOLO v5和小样本学习的害虫识别方法[J]. 计算机科学,2022,49(12):257-263.
[13]刘思诚,李嘉琛,邓皓,等. 基于YOLO v5改进的小目标检测算法[J]. 兵工自动化,2022,41(12):78-82,94.
[14]马宏兴,张淼,董凯兵,等. 基于改进YOLO v5的宁夏草原蝗虫识别模型研究[J]. 农业机械学报,2022,53(11):270-279.
[15]Zhu P C,Chen B L,Liu B S,et al. Object detection for hazardous material vehicles based on improved YOLO v5 algorithm[J]. Electronics,2023,12(5):1257.
[16]Li J F,Lian X Q. Research on forest fire detection algorithm based on improved YOLO v5[J]. Machine Learning and Knowledge Extraction,2023,5(3):725-745.
[17]Jiang T Y,Li C,Yang M,et al. An improved YOLO v5s algorithm for object detection with an attention mechanism[J]. Electronics,2022,11(16):2494.
[18]周绍发,肖小玲,刘忠意,等. 改进的基于YOLO v5s苹果树叶病害检测[J]. 江苏农业科学,2023,51(13):212-220.
[19]Sun C,Zhang S W,Qu P Q,et al. MCA-YOLO v5-light:a faster,stronger and lighter algorithm for helmet-wearing detection[J]. Applied Sciences,2022,12(19):9697.
[20]Guo G G,Zhang Z Y. Road damage detection algorithm for improved YOLO v5[J]. Scientific Reports,2022,12(1):15523.
[21]Sun Z J,Yang H,Zhang Z F,et al. An improved YOLO v5-based tapping trajectory detection method for natural rubber trees[J]. Agriculture,2022,12(9):1309.
[22]丰玉华,魏怡,刘力手,等. 面向跌倒行人的MP-YOLO v5检测模型[J]. 重庆邮电大学学报(自然科学版),2023,35(5):960-970.

相似文献/References:

[1]杜鹏程,蒋笃忠,向阳,等.基于YOLO v5s目标检测算法的烤烟鲜叶成熟度识别方法[J].江苏农业科学,2023,51(19):158.
 Du Pengcheng,et al.Identification method for fresh leaf maturity of flue-cured tobacco based on YOLO v5s target detection algorithm[J].Jiangsu Agricultural Sciences,2023,51(20):158.
[2]刘忠意,魏登峰,李萌,等.基于改进YOLO v5的橙子果实识别方法[J].江苏农业科学,2023,51(19):173.
 Liu Zhongyi,et al.Orange fruit recognition method based on improved YOLO v5[J].Jiangsu Agricultural Sciences,2023,51(20):173.
[3]李滨,樊健.基于YOLO v5的水稻害虫分类[J].江苏农业科学,2024,52(2):175.
 Li Bin,et al.Classification of rice pests based on YOLO v5[J].Jiangsu Agricultural Sciences,2024,52(20):175.
[4]蔡易南,肖小玲.基于改进YOLO v5n的葡萄叶病虫害检测模型轻量化方法[J].江苏农业科学,2024,52(7):198.
 Cai Yinan,et al.Lightweight method of grape leaf diseases and insect pests detection model based on improved YOLO v5n[J].Jiangsu Agricultural Sciences,2024,52(20):198.
[5]温彬彬,张华,孟祥龙.基于改进YOLO v5的轻量化苹果检测方法[J].江苏农业科学,2024,52(12):217.
 Wen Binbin,et al.A lightweight apple detection method based on improved YOLO v5[J].Jiangsu Agricultural Sciences,2024,52(20):217.
[6]吴坚,秦玉广.基于改进YOLO v5的农田苗草检测方法[J].江苏农业科学,2024,52(13):197.
 Wu Jian,et al.Detection of seedlings and weeds in farmland based on an improved YOLO v5 algorithm[J].Jiangsu Agricultural Sciences,2024,52(20):197.
[7]王博,胡蓉华.基于轻量化神经网络的桃树叶片病害检测方法[J].江苏农业科学,2025,53(5):138.
 Wang Bo,et al.A peach leaf disease detection method based on lightweight neural network[J].Jiangsu Agricultural Sciences,2025,53(20):138.

备注/Memo

备注/Memo:
收稿日期:2023-10-10
基金项目:河北省科技计划(编号:22370701D)。
作者简介:李炳鑫(1999—),男,河北唐山人,硕士研究生,主要从事人工智能与机器学习研究。E-mail:291750154@qq.com。
通信作者:宋涛,博士,高级实验师,硕士生导师,主要从事智能传感器与物联网技术研究。E-mail:songtao@hebut.edu.cn。
更新日期/Last Update: 2024-10-20