[1]Zhao C J,Zhang Y,Du J J,et al. Crop phenomics:current status and perspectives[J]. Frontiers in Plant Science,2019,10:714.
[2]Girshick R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision. Santiago:IEEE,2015:1440-1448.
[3]Redmon J,Divvala S,Girshick R,et al. You only look once:unified,real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016:779-788.
[4]Liu W,Anguelov D,Erhan D,et al. SSD:single shot MultiBox detector[M]//Lecture Notes in Computer Science.Cham:Springer International Publishing,2016:21-37.
[5]Hasan M M,Chopin J P,Laga H,et al. Detection and analysis of wheat spikes using Convolutional Neural Networks[J]. Plant Methods,2018,14:100.
[6]He M X,Hao P,Xin Y Z.A robust method for wheatear detection using UAV in natural scenes[J]. IEEE Access,2020,8:189043-189053.
[7]刘航,刘涛,李世娟,等. 基于深度残差网络的麦穗回归计数方法[J]. 中国农业大学学报,2021,26(6):170-179.
[8]黄子琦. 基于深度学习麦穗识别的小麦估产研究[D]. 泰安:山东农业大学,2022:3-4.
[9]Ge Z,Liu S,Wang F,et al. Yolox:Exceeding yolo series in 2021[EB/OL]. (2021-07-18)[2023-10-05]. https://arxiv.org/abs/2107.08430.
[10]Redmon J,Farhadi A.YOLO v3:an incremental improvement[EB/OL]. (2018-04-08)[2023-10-05]. https://arxiv.org/abs/1804.02767v1.
[11]Ioffe S,Szegedy C. Batch normalization:accelerating deep network training by reducing internal covariate shift[J]. 32nd International Conference on Machine Learning,2015,1:448-456.
[12]Xu B,Wang N Y,Chen T Q,et al. Empirical evaluation of rectified activations in convolutional network[EB/OL]. (2015-11-27)[2023-10-05]. https://arxiv.org/abs/1505.00853v2.
[13]He K M,Zhang X Y,Ren S Q,et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916.
[14]Huang Z C,Wang J L,Fu X S,et al. DC-SPP-YOLO:dense connection and spatial pyramid pooling based YOLO for object detection[J]. Information Sciences,2020,522:241-258.
[15]Hu J,Shen L,Sun G.Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake:IEEE,2018:7132-7141.
[16]Woo S,Park J,Lee J Y,et al. CBAM:convolutional block attention module[M]//Lecture Notes in Computer Science.Cham:Springer International Publishing,2018:3-19.
[17]Hou Q B,Zhou D Q,Feng J S.Coordinate attention for efficient mobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Nashville:IEEE,2021:13708-13717.
[18]Yang X,Yang X J,Yang J R,et al. Learning high-precision bounding box for rotated object detection via kullback-leibler divergence[EB/OL]. (2021-06-03)[2023-10-05]. https://arxiv.org/abs/2106.01883v5.
[19]Zakaria Y,Mokhtar S A,Baraka H,et al. Improving small and cluttered object detection by incorporating instance level denoising into single-shot alignment network for remote sensing imagery[J]. IEEE Access,2022,10:51176-51190.
[20]David E,Serouart M,Smith D,et al. Global Wheat Head Dataset 2021:more diversity to improve the benchmarking of wheat head localization methods[EB/OL]. (2021-06-03)[2023-10-05]. https://arxiv.org/abs/2105.07660v2.
[21]Madec S,Jin X L,Lu H,et al. Ear density estimation from high resolution RGB imagery using deep learning technique[J]. Agricultural and Forest Meteorology,2019,264:225-234.
[22]刘颖,刘红燕,范九伦,等. 基于深度学习的小目标检测研究与应用综述[J]. 电子学报,2020,48(3):590-601.
[23]Ghiasi G,Cui Y,Srinivas A,et al. Simple copy-paste is a strong data augmentation method for instance segmentation[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville:IEEE,2021:2918-2928.
[1]罗巍,陈曙东,王福涛,等.基于深度学习的大型食草动物种群监测方法[J].江苏农业科学,2020,48(20):247.
Luo Wei,et al.Monitoring method of large herbivore population based on deep learning[J].Jiangsu Agricultural Sciences,2020,48(20):247.
[2]陈恩会,褚姝频,王炜,等.基于RetinaNet模型的梨小食心虫智能识别计数方法[J].江苏农业科学,2021,49(24):205.
Chen Enhui,et al.Intelligent recognition and counting method of Grapholitha molesta based on RetinaNet model[J].Jiangsu Agricultural Sciences,2021,49(20):205.
[3]陶雪阳,施振旦,郭彬彬,等.基于RFID与目标检测的种鹅个体产蛋信息监测方法[J].江苏农业科学,2023,51(5):200.
Tao Xueyang,et al.Monitoring method of individual egg-laying information of breeding geese based on RFID and object detection[J].Jiangsu Agricultural Sciences,2023,51(20):200.
[4]严陈慧子,田芳明,谭峰,等.基于改进YOLOv4的水稻病害快速检测方法[J].江苏农业科学,2023,51(6):187.
Yanchen Huizi,et al.Rapid detection method of rice diseases based on improved YOLOv4[J].Jiangsu Agricultural Sciences,2023,51(20):187.
[5]周绍发,肖小玲,刘忠意,等.改进的基于YOLOv5s苹果树叶病害检测[J].江苏农业科学,2023,51(13):212.
Zhou Shaofa,et al.Improved apple leaf disease detection based on YOLOv5s[J].Jiangsu Agricultural Sciences,2023,51(20):212.
[6]姜国权,杨正元,霍占强,等.基于改进YOLOv5网络的疏果前苹果检测方法[J].江苏农业科学,2023,51(14):205.
Jiang Guoquan,et al.Apple detection method before thinning fruit based on improved YOLOv5 model[J].Jiangsu Agricultural Sciences,2023,51(20):205.
[7]王圆圆,林建,王姗.基于YOLOv4-tiny模型的水稻早期病害识别方法[J].江苏农业科学,2023,51(16):147.
Wang Yuanyuan,et al.An early rice disease recognition method based on YOLOv4-tiny model[J].Jiangsu Agricultural Sciences,2023,51(20):147.
[8]倪智涛,胡伟健,李宝山,等.一种基于图像分类与目标检测协同的番茄细粒度病害识别方法[J].江苏农业科学,2023,51(22):221.
Ni Zhitao,et al.A novel method for tomato fine-grained disease recognition based on image classification and target detection[J].Jiangsu Agricultural Sciences,2023,51(20):221.
[9]施杰,林双双,罗建刚,等.基于YOLO v5s改进模型的玉米作物病虫害检测方法[J].江苏农业科学,2023,51(24):175.
Shi Jie,et al.Study on a detection method for crop diseases and insect pests based on YOLO v5s improved model[J].Jiangsu Agricultural Sciences,2023,51(20):175.
[10]郑旭康,李志忠,秦俊豪.基于半监督学习的梨叶病害检测[J].江苏农业科学,2024,52(5):192.
Zheng Xukang,et al.Study on pear leaf disease detection based on semi-supervised learning[J].Jiangsu Agricultural Sciences,2024,52(20):192.