|本期目录/Table of Contents|

[1]亢洁,代鑫,刘文波,等.基于改进YOLO v8的玉米田间杂草检测网络[J].江苏农业科学,2024,52(20):165-172.
 Kang Jie,et al.Weed detection network in maize field based on improved YOLO v8[J].Jiangsu Agricultural Sciences,2024,52(20):165-172.
点击复制

基于改进YOLO v8的玉米田间杂草检测网络(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第20期
页码:
165-172
栏目:
杂草智能检测
出版日期:
2024-10-20

文章信息/Info

Title:
Weed detection network in maize field based on improved YOLO v8
作者:
亢洁 代鑫 刘文波 徐婷 夏宇
陕西科技大学电气与控制工程学院,陕西西安 710021
Author(s):
Kang Jieet al
关键词:
玉米田杂草目标检测YOLO v8nEMA注意力机制
Keywords:
-
分类号:
S126;TP391.41
DOI:
-
文献标志码:
A
摘要:
针对3~5叶期玉米田间伴生杂草目标尺度小、玉米叶片遮挡严重、田间自然环境复杂等导致检测精度不高的问题,提出了一种基于改进YOLO v8n的玉米田间杂草检测算法。首先下载涵盖了黑麦草、芥菜、甘菊、藜麦等常见伴生杂草和玉米幼苗的图像,对图像进行翻转等数据增强方式增加样本多样性,提升模型识别和泛化能力。其次在YOLO v8n网络基础上,重新构建了轻量级跨尺度特征融合网络,增强模型多尺度特征融合能力,并输出一个针对小目标杂草的预测层,提升网络的检测精度。最后,在4个目标检测头前嵌入高效多尺度注意力机制EMA,使得检测头更加专注于目标区域。试验结果表明,本模型的平均精度均值提升了2.4百分点、杂草的平均精度提升了5.1百分点,模型内存用量和参数量分别减小了22.6%和26.0%;本模型与SSD-MobileNet v2、Efficientdet-D0及YOLO系列目标检测模型相比,平均精度均值至少提升了1.8百分点、识别杂草的平均精度至少提升了4.6百分点,并且模型内存用量和参数量都处在较低水平。本研究提出的玉米田间杂草检测模型在降低了模型内存用量和参数量的同时提高了检测精度,可为精准除草设备提供技术支持。
Abstract:
-

参考文献/References:

[1]刘莫尘,高甜甜,马宗旭,等. 基于MSRCR-YOLO v4-tiny的田间玉米杂草检测模型[J].农业机械学报,2022,53(2):246-255,335.
[2]王鹏飞. 基于深度学习的玉米田间杂草识别技术及应用[D].泰安:山东农业大学,2019:75-81.
[3]Wang A,Zhang W,Wei X. A review on weed detection using ground-based machine vision and image processing techniques[J]. Computers and electronics in agriculture,2019,158:226-240.
[4]Liu B,Bruch R. Weed detection for selective spraying:a review[J]. Current Robotics Reports,2020,1(1):19-26.
[5]姜红花,张传银,张昭,等. 基于Mask R-CNN的玉米田间杂草检测方法[J].农业机械学报,2020,51(6):220-228,247.
[6]Radoglou-Grammatikis P,Sarigiannidis P,Lagkas T,et al. A compilation of UAV applications for precision agriculture[J]. Computer Networks,2020,172:107148.
[7]Deng X W,Qi L,Ma X,et al. Recognition of weeds at seedling stage in paddy fields using multi-feature fusion and deep belief networks[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(14):165-172.
[8]Bakhshipour A,Jafari A. Evaluation of support vector machine and artificial neural networks in weed detection using shape features[J]. Computers and Electronics in Agriculture,2018,145:153-160.
[9]Wu Z,Chen Y,Zhao B,et al. Review of weed detection methods based on computer vision[J]. Sensors,2021,21(11):3647.
[10]Hasan A S M M,Sohel F,Diepeveen D,et al. A survey of deep learning techniques for weed detection from images[J]. Computers and Electronics in Agriculture,2021,184:106067.
[11]Potena C,Nardi D,Pretto A. Fast and accurate crop and weed identification with summarized train sets for precision agriculture[C]//Intelligent Autonomous Systems 14:Proceedings of the 14th International Conference IAS-14 14. Springer International Publishing,2017:105-121.
[12]孙俊,谭文军,武小红,等. 多通道深度可分离卷积模型实时识别复杂背景下甜菜与杂草[J]. 农业工程学报,2019,35(12):184-190.
[13]李彧,余心杰,郭俊先. 基于全卷积神经网络方法的玉米田间杂草识别[J]. 江苏农业科学,2022,50(6):93-100.
[14]温德圣,许燕,周建平,等. 自然光照影响下基于深度卷积神经网络和颜色迁移的杂草识别方法[J]. 中国科技论文,2020,15(3):287-292.
[15]亢洁,刘港,郭国法. 基于多尺度融合模块和特征增强的杂草检测方法[J]. 农业机械学报,2022,53(4):254-260.
[16]Ouyang D,He S,Zhang G,et al. Efficient multi-scale attention module with cross-spatial learning[C]//ICASSP 2023-2023 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP). IEEE,2023:1-5.
[17]Bertoglio R,Fontana G,Matteucci M,et al. On the design of the agri-food competition for robot evaluation (acre)[C]//2021 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC). IEEE,2021:161-166.
[18]Woo S,Park J,Lee J Y,et al. Cbam:Convolutional block attention module[C]//Proceedings of the European conference on computer vision (ECCV). 2018:3-19.
[19]Yang L,Zhang R Y,Li L,et al. Simam:A simple,parameter-free attention module for convolutional neural networks[C]//International conference on machine learning. PMLR,2021:11863-11874.
[20]Hou Q,Zhou D,Feng J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021:13713-13722.
[21]Hu J,Shen L,Sun G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018:7132-7141.
[22]Huang H,Chen Z,Zou Y,et al. Channel prior convolutional attention for medical image segmentation[J]. arXiv preprint arXiv:2306.05196,2023.
[23]鲍浩,张艳. 基于注意力机制与改进残差模块的豆叶病害识别[J]. 江苏农业科学,2023,51(16):187-194.
[24]Cheng C. Real-time mask detection based on SSD-MobileNetv2[C]//2022 IEEE 5th International Conference on Automation,Electronics and Electrical Engineering (AUTEEE). IEEE,2022:761-767.
[25]Tan M,Pang R,Le Q V. Efficientdet:Scalable and efficient object detection[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020:10781-10790.

相似文献/References:

[1]杨君珑,李小伟.模拟氮沉降对干旱半干旱区几种杂草生长及光合特征的影响[J].江苏农业科学,2015,43(12):157.
 Yang Junlong,et al.Effects of simulated nitrogen deposition on growth and photosynthetic characteristic of weeds in arid and semiarid area[J].Jiangsu Agricultural Sciences,2015,43(20):157.
[2]高婷,王红春,石旭旭,等.水稻机械化插秧栽培及其草害防除[J].江苏农业科学,2013,41(09):60.
 Gao Ting,et al.Cultivation and weeds control of machine transplanting rice[J].Jiangsu Agricultural Sciences,2013,41(20):60.
[3]龚勋,王珩义.不同年生紫茎泽兰不同部位水浸液对甜荞种子萌发的影响[J].江苏农业科学,2016,44(03):161.
 Gong Xun,et al.Effects of aqueous extracts of different organs of Eupatorium adenophorum born in different years on seed germination ofFagopyrum esculentum Moench[J].Jiangsu Agricultural Sciences,2016,44(20):161.
[4]张俊,刘娟,臧秀旺,等.花生田常见杂草防治措施及展望[J].江苏农业科学,2016,44(01):141.
 Zhang Jun,et al.Control measures and prospect of common weeds in peanut field[J].Jiangsu Agricultural Sciences,2016,44(20):141.
[5]焦子伟,张相锋,尚天翠,等.国内外有机农业杂草控制技术研究进展[J].江苏农业科学,2016,44(01):1.
 Jiao Ziwei,et al.Research progress of weed control technology of organic farming at home and abroad[J].Jiangsu Agricultural Sciences,2016,44(20):1.
[6]武旭霞,张东彦,宋健,等.杂草识别专家及信息系统研究进展[J].江苏农业科学,2014,42(05):132.
 Wu Xuxia,et al.Research progress of weed identification expert and information system[J].Jiangsu Agricultural Sciences,2014,42(20):132.
[7]温广月,钱振官,李涛,等.稻田鸭舌草田间发生消长规律及生态学特性[J].江苏农业科学,2015,43(11):201.
 Wen Guangyue,et al.Preliminary study on occurrence and germination behavior of Monochoria vaginalis in paddy field[J].Jiangsu Agricultural Sciences,2015,43(20):201.
[8]刘兴林,桑松,孙涛,等.五氟磺草胺药肥混用对水稻移栽田杂草的防除效果[J].江苏农业科学,2015,43(08):119.
 Liu Xinglin,et al.Control effect of penoxsulam 0.025% GR mixed with fertilizer on annual weeds in transplanted rice fields[J].Jiangsu Agricultural Sciences,2015,43(20):119.
[9]王怀宇,李景丽.基于纹理特征的玉米苗期田间杂草识别[J].江苏农业科学,2014,42(07):143.
 Wang Huaiyu,et al.Weed identification in field during seedling stage of maize based on textural features[J].Jiangsu Agricultural Sciences,2014,42(20):143.
[10]李晓兰,相吉山,张艾明,等.地膜覆盖对玉米田土壤理化性质和线虫群落组成的影响[J].江苏农业科学,2018,46(15):257.
 Li Xiaolan,et al.Effects of plastic film mulching on soil physicochemical properties and nematode community composition in corn fields[J].Jiangsu Agricultural Sciences,2018,46(20):257.
[11]熊战之,袁树忠,钱兰娟,等.硝磺草酮、苯唑草酮对夏玉米田杂草的防除效果[J].江苏农业科学,2013,41(12):134.
 Xiong Zhanzhi,et al.Control effects of mesotrione and topramezone on weeds in summer maize fields[J].Jiangsu Agricultural Sciences,2013,41(20):134.
[12]张军高,漆永红,岳德成,等.玉米田封闭除草剂撒施效果比较[J].江苏农业科学,2015,43(09):154.
 Zhang Jungao,et al.Comparative study on effects of closed herbicides in corn field[J].Jiangsu Agricultural Sciences,2015,43(20):154.

备注/Memo

备注/Memo:
收稿日期:2024-03-25
基金项目:国家自然科学基金(编号:62203285);陕西省自然科学基础研究计划(编号:2022JQ-181);西安市科技计划(编号:23NYGG0070)。
作者简介:亢洁(1973—),女,陕西渭南人,博士,副教授,硕士生导师,主要从事机器视觉、智慧农业方面的研究。E-mail:kangjie@sust.edu.cn。
更新日期/Last Update: 2024-10-20