[1]张玉婷. 农作物病虫害防治工作存在的问题与对策[J]. 乡村科技,2022,13(2):83-85.
[2]2022年全国农作物重大病虫害发生趋势预报[J]. 中国植保导刊,2022,42(4):107-108.
[3]武保华. 农作物病虫害防治中存在的问题及对策[J]. 河北农机,2023(10):91-93.
[4]李爱芳. 农业种植中病虫危害特点及应对方法[J]. 农业科技与信息,2021,8(8):46-47.
[5]Xin M Y,Wang Y. Image recognition of crop diseases and insect pests based on deep learning[J]. Wireless Communications and Mobile Computing,2021,2021(1):1-15.
[6]Li D S,Wang R J,Xie C J,et al. A recognition method for rice plant diseases and pests video detection based on deep convolutional neural network[J]. Sensors,2020,20(3):578.
[7]Rahman C R,Arko P S,Ali M E,et al. Identification and recognition of rice diseases and pests using convolutional neural networks[J]. Biosystems Engineering,2020,194:112-120.
[8]Liu J,Wang X W. Tomato diseases and pests detection based on improved YOLO v3 convolutional neural network[J]. Frontiers in Plant Science,2020,11:898.
[9]范春全,何彬彬. 基于迁移学习的水稻病虫害识别[J]. 中国农业信息,2020,32(2):36-44.
[10]吴健宇. 基于深度卷积神经网络的农作物病虫害识别及实现[D]. 哈尔滨:哈尔滨工业大学,2019:20-25.
[11]赵立新,侯发东,吕正超,等. 基于迁移学习的棉花叶部病虫害图像识别[J]. 农业工程学报,2020,36(7):184-191.
[12]黄双萍,孙超,齐龙,等. 基于深度卷积神经网络的水稻穗瘟病检测方法[J]. 农业工程学报,2017,33(20):169-176.
[13]刘永波,雷波,曹艳,等. 基于深度卷积神经网络的玉米病害识别[J]. 中国农学通报,2018,34(36):159-164.
[14]龙满生,欧阳春娟,刘欢,等. 基于卷积神经网络与迁移学习的油茶病害图像识别[J]. 农业工程学报,2018,34(18):194-201.
[15]Jiang F,Lu Y,Chen Y,et al. Image recognition of four rice leaf diseases based on deep learning and support vector machine[J]. Computers and Electronics in Agriculture,2020,179:105824.
[16]Beyer L,Hénaff O J,Kolesnikov A,et al. Are we done with ImageNet?[EB/OL]. 2020:arXiv:2006.07159.http://arxiv.org/abs/2006.07159.
[17]Recht B,Roelofs R,Schmidt L,et al. Do ImageNet classifiers generalize to ImageNet?[EB/OL]. 2019:arXiv:1902.10811.http://arxiv.org/abs/1902.10811.
[18]He K M,Zhang X Y,Ren S Q,et al. Identity mappings in deep residual networks[C]//European Conference on Computer Vision.Cham:Springer,2016:630-645.
[19]Shafiq M,Gu Z Q. Deep residual learning for image recognition:a survey[J]. Applied Sciences,2022,12(18):8972.
[20]刘晓锋,高丽梅. 基于改进空间残差收缩网络模型的农作物病虫害识别[J]. 山东农业大学学报(自然科学版),2022,53(2):259-264.
[21]刘冬寒. 基于改进深度残差网络的农作物病害识别研究[D]. 杭州:浙江农林大学,2021:17-20.
[22]Szegedy C,Ioffe S,Vanhoucke V,et al. Inception-v4,inception-ResNet and the impact of residual connections on learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence,2017,31(1):4278-4284.
[23]Szegedy C,Vanhoucke V,Ioffe S,et al. Rethinking the inception architecture for computer vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas,NV,USA.IEEE,2016:2818-2826.
[24]樊湘鹏,许燕,周建平,等. 基于迁移学习和改进CNN的葡萄叶部病害检测系统[J]. 农业工程学报,2021,37(6):151-159.
[25]余小东,杨孟辑,张海清,等. 基于迁移学习的农作物病虫害检测方法研究与应用[J]. 农业机械学报,2020,51(10):252-258.
[26]王东方,汪军. 基于迁移学习和残差网络的农作物病害分类[J]. 农业工程学报,2021,37(4):199-207.
[27]仝卫国,李敏霞,张一可. 深度学习优化算法研究[J]. 计算机科学,2018,45(增刊2):155-159.
[28]贾桐. 深度学习常用优化算法研究[J]. 信息技术与网络安全,2019,38(7):42-46.
[29]李明,来国红,常晏鸣,等. 深度学习算法中不同优化器的性能分析[J]. 信息技术与信息化,2022(3):206-209.
[30]Tammina S.Transfer learning using VGG-16 with deep convolutional neural network for classifying images[J]. International Journal of Scientific and Research Publications,2019,9(10):143-150.
[1]陈光绒,李小琴.基于物联网技术的农作物病虫害自动测报系统[J].江苏农业科学,2015,43(04):406.
Chen Guangrong,et al.Automatic measuring and reporting system for crop diseases and insect pests based on internet of things[J].Jiangsu Agricultural Sciences,2015,43(20):406.
[2]郑颖,金松林,张自阳,等.基于领域本体的农作物病虫害问题分类研究[J].江苏农业科学,2016,44(09):145.
Zheng Ying,et al.Study on crop diseases and insect pests question classification based on domain ontology[J].Jiangsu Agricultural Sciences,2016,44(20):145.
[3]刘嘉政.基于深度迁移学习模型的花卉种类识别[J].江苏农业科学,2019,47(20):231.
Liu Jiazheng.Flower species identification based on deep transfer learning model[J].Jiangsu Agricultural Sciences,2019,47(20):231.
[4]康飞龙,李佳,刘涛,等.多类农作物病虫害的图像识别应用技术研究综述[J].江苏农业科学,2020,48(22):22.
Kang Feilong,et al.Application technology of image recognition for various crop diseases and insect pests: a review[J].Jiangsu Agricultural Sciences,2020,48(20):22.
[5]徐振南,王建坤,胡益嘉,等.基于MobileNetV3的马铃薯病害识别[J].江苏农业科学,2022,50(10):176.
Xu Zhennan,et al.Potato disease recognition based on MobileNetV3[J].Jiangsu Agricultural Sciences,2022,50(20):176.
[6]徐重新,张江兆,胡晓丹,等.农药联合复配在农作物病虫害防治上的研究进展[J].江苏农业科学,2023,51(4):8.
Xu Chongxin,et al.Research progress of pesticide combination in crop diseases and insect pests control[J].Jiangsu Agricultural Sciences,2023,51(20):8.
[7]李子涵,周省邦,赵戈,等.基于卷积神经网络的农业病虫害识别研究综述[J].江苏农业科学,2023,51(7):15.
Li Zihan,et al.Study on agricultural pest identification based on convolutional neural network: a review[J].Jiangsu Agricultural Sciences,2023,51(20):15.
[8]温艳兰,陈友鹏,王克强,等.基于迁移学习和改进残差网络的复杂背景下害虫图像识别[J].江苏农业科学,2023,51(8):171.
Wen Yanlan,et al.Recognition of pest images under complex background based on transfer learning and improved residual network[J].Jiangsu Agricultural Sciences,2023,51(20):171.
[9]王哲豪,范丽丽,何前.基于MobileNet V2和迁移学习的番茄病害识别[J].江苏农业科学,2023,51(9):215.
Wang Zhehao,et al.Recognition of tomato disease based on transfer learning and MobileNet V2[J].Jiangsu Agricultural Sciences,2023,51(20):215.
[10]章广传,李彤,何云,等.基于迁移模型集成的马铃薯叶片病害识别方法[J].江苏农业科学,2023,51(15):216.
Zhang Guangchuan,et al.A method for identifying potato leaf diseases based on migration model integration[J].Jiangsu Agricultural Sciences,2023,51(20):216.
[11]黎振,陆玲,熊方康.基于k-means分割和迁移学习的番茄病理识别[J].江苏农业科学,2021,49(12):156.
Li Zhen,et al.Tomato pathological recognition based on k-means segmentation and transfer learning[J].Jiangsu Agricultural Sciences,2021,49(20):156.