[1]褚世海,李儒海,黄启超,等. 湖北省水稻田农药使用现状调查[J]. 中国植保导刊,2022,42(12):65-68.
[2]钟朝军,戴长庚,毛向华. 水稻主要虫害绿色防控技术研究[J]. 耕作与栽培,2022,42(6):123-124.
[3]蒋心璐,陈天恩,王聪,等. 农业害虫检测的深度学习算法综述[J]. 计算机工程与应用,2023,59(6):30-44.
[4]Zou K L,Ge L Z,Zhou H,et al. Broccoli seedling pest damage degree evaluation based on machine learning combined with color and shape features[J]. Information Processing in Agriculture,2021,8(4):505-514.
[5]田冉,陈梅香,董大明,等. 红外传感器与机器视觉融合的果树害虫识别及计数方法[J]. 农业工程学报,2016,32(20):195-201.
[6]Rustia D J A,Lin C E,Chung J Y,et al. Application of an image and environmental sensor network for automated greenhouse insect pest monitoring[J]. Journal of Asia-Pacific Entomology,2020,23(1):17-28.
[7]王春桃,梁炜健,郭庆文,等. 农业害虫智能视觉检测研究综述[J]. 中国农机化学报,2023,44(7):207-213.
[8]温艳兰,陈友鹏,王克强,等. 基于机器视觉的病虫害检测综述[J]. 中国粮油学报,2022,37(10):271-279.
[9]Domingues T,Brando T,Ferreira J C.Machine learning for detection and prediction of crop diseases and pests:a comprehensive survey[J]. Agriculture,2022,12(9):1350.
[10]Kasinathan T,Uyyala S R.Machine learning ensemble with image processing for pest identification and classification in field crops[J]. Neural Computing and Applications,2021,33(13):7491-7504.
[11]吴子炜,夏芳,陆林峰,等. 基于改进YOLO v5的水稻主要害虫识别方法[J]. 江苏农业科学,2023,51(21):218-224.
[12]温艳兰,陈友鹏,王克强,等. 基于迁移学习和改进残差网络的复杂背景下害虫图像识别[J]. 江苏农业科学,2023,51(8):171-177.
[13]Krizhevsky A,Sutskever I,Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM,2017,60(6):84-90.
[14]Xiao J Q,Zhou Z Y. Research progress of RNN language model[C]//2020 IEEE International Conference on Artificial Intelligence and Computer Applications(ICAICA).Dalian,China:IEEE,2020:1285-1288.
[15]Vaswani A,Shazeer N,Parmar N,et al. Attention is all you need[EB/OL]. (2017-06-12)[2024-04-01]. https://arxiv.org/abs/1706.03762.
[16]慕君林,马博,王云飞,等. 基于深度学习的农作物病虫害检测算法综述[J]. 农业机械学报,2023,54(增刊2):301-313.
[17]佘颢,吴伶,单鲁泉. 基于SSD网络模型改进的水稻害虫识别方法[J]. 郑州大学学报(理学版),2020,52(3):49-54.
[18]范春全,何彬彬. 基于迁移学习的水稻病虫害识别[J]. 中国农业信息,2020,32(2):36-44.
[19]Wu X P,Zhan C,Lai Y K,et al. IP102:a large-scale benchmark dataset for insect pest recognition[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Long Beach,CA,USA:IEEE,2019:8779-8788.
[20]Redmon J,Divvala S,Girshick R,et al. You only look once:unified,real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Las Vegas,NV,USA:IEEE,2016:779-788.
[21]Redmon J,Farhadi A. YOLO9000:better,faster,stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Honolulu,HI,USA:IEEE,2017:6517-6525.
[22]Redmon J,Farhadi A. YOLO v3:an incremental improvement[EB/OL]. (2018-04-08)[2023-12-16]. https://arxiv.org/abs/1804.02767v1.
[23]Thuan D. Evolution of Yolo algorithm and YOLO v5:the State-of-the-Art object detention algorithm[J/OL]. Oulu University of Applied Sciences,2021:1-61(2021-03-04)[2023-04-27]. https://urn.fi/URN:NBN:fi:amk-202103042892.
[24]Fu J,Liu J,Tian H J,et al. Dual attention network for scene segmentation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Long Beach,CA,USA:IEEE,2019:3141-3149.
[25]Sunkara R,Luo T. No more strided convolutions or pooling:a new CNN building block for low-resolution images and Small objects[EB/OL]. (2022-08-07)[2023-11-13]. https://doi.org/10.48550/arXiv.2208.03641.
[26]毛远宏,贺占庄,刘露露. 目标跟踪中基于深度可分离卷积的剪枝方法[J]. 西安交通大学学报,2021,55(1):52-59.
[27]Li H L,Li J,Wei H B,et al. Slim-neck by GSConv:a better design paradigm of detector architectures for autonomous vehicles[EB/OL]. (2022-06-06)[2023-11-01]. https://arxiv.org/abs/2206.02424v3.
[28]Liu H J,Liu F Q,Fan X Y,et al. Polarized self-attention:towards high-quality pixel-wise mapping[J]. Neurocomputing,2022,506:158-167.
[1]罗巍,陈曙东,王福涛,等.基于深度学习的大型食草动物种群监测方法[J].江苏农业科学,2020,48(20):247.
Luo Wei,et al.Monitoring method of large herbivore population based on deep learning[J].Jiangsu Agricultural Sciences,2020,48(20):247.
[2]罗智心,姚静,张茹,等.二化螟36 d标准化饲养技术与管理体系[J].江苏农业科学,2021,49(24):100.
Luo Zhixin,et al.A 36-days standardized mass rearing technique and management system for rice stem borer,Chilo suppressalis (Lepidoptera:Crambidae)[J].Jiangsu Agricultural Sciences,2021,49(20):100.
[3]陈恩会,褚姝频,王炜,等.基于RetinaNet模型的梨小食心虫智能识别计数方法[J].江苏农业科学,2021,49(24):205.
Chen Enhui,et al.Intelligent recognition and counting method of Grapholitha molesta based on RetinaNet model[J].Jiangsu Agricultural Sciences,2021,49(20):205.
[4]陶雪阳,施振旦,郭彬彬,等.基于RFID与目标检测的种鹅个体产蛋信息监测方法[J].江苏农业科学,2023,51(5):200.
Tao Xueyang,et al.Monitoring method of individual egg-laying information of breeding geese based on RFID and object detection[J].Jiangsu Agricultural Sciences,2023,51(20):200.
[5]严陈慧子,田芳明,谭峰,等.基于改进YOLOv4的水稻病害快速检测方法[J].江苏农业科学,2023,51(6):187.
Yanchen Huizi,et al.Rapid detection method of rice diseases based on improved YOLOv4[J].Jiangsu Agricultural Sciences,2023,51(20):187.
[6]周绍发,肖小玲,刘忠意,等.改进的基于YOLOv5s苹果树叶病害检测[J].江苏农业科学,2023,51(13):212.
Zhou Shaofa,et al.Improved apple leaf disease detection based on YOLOv5s[J].Jiangsu Agricultural Sciences,2023,51(20):212.
[7]姜国权,杨正元,霍占强,等.基于改进YOLOv5网络的疏果前苹果检测方法[J].江苏农业科学,2023,51(14):205.
Jiang Guoquan,et al.Apple detection method before thinning fruit based on improved YOLOv5 model[J].Jiangsu Agricultural Sciences,2023,51(20):205.
[8]王圆圆,林建,王姗.基于YOLOv4-tiny模型的水稻早期病害识别方法[J].江苏农业科学,2023,51(16):147.
Wang Yuanyuan,et al.An early rice disease recognition method based on YOLOv4-tiny model[J].Jiangsu Agricultural Sciences,2023,51(20):147.
[9]吴子炜,夏芳,陆林峰,等.基于改进YOLO v5的水稻主要害虫识别方法[J].江苏农业科学,2023,51(21):218.
Wu Ziwei,et al.An identification method for rice major pests based on improved YOLO v5[J].Jiangsu Agricultural Sciences,2023,51(20):218.
[10]倪智涛,胡伟健,李宝山,等.一种基于图像分类与目标检测协同的番茄细粒度病害识别方法[J].江苏农业科学,2023,51(22):221.
Ni Zhitao,et al.A novel method for tomato fine-grained disease recognition based on image classification and target detection[J].Jiangsu Agricultural Sciences,2023,51(20):221.