|本期目录/Table of Contents|

[1]叶琪,王丽芬,马明涛,等.基于改进YOLO v8的草莓病害检测方法[J].江苏农业科学,2024,52(20):250-259.
 Ye Qi,et al.Strawberry disease detection method based on improved YOLO v8[J].Jiangsu Agricultural Sciences,2024,52(20):250-259.
点击复制

基于改进YOLO v8的草莓病害检测方法(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第20期
页码:
250-259
栏目:
病虫害智能检测
出版日期:
2024-10-20

文章信息/Info

Title:
Strawberry disease detection method based on improved YOLO v8
作者:
叶琪12 王丽芬2 马明涛2 赵鑫12 段必冲12
1.吉林化工学院信息与控制工程学院,吉林吉林 132022; 2.吉林农业科技学院电气与信息工程学院,吉林吉林 132101
Author(s):
Ye Qiet al
关键词:
病害检测YOLO v8注意力机制Slim-NeckMPDIoU
Keywords:
-
分类号:
S126;TP391.41
DOI:
-
文献标志码:
A
摘要:
针对自然条件下草莓病害检测难度大、人工检测效率低下、传统计算机检测方式步骤繁琐、检测精度差以及模型的参数量与计算量大的问题,构建一种基于改进YOLO v8的草莓病害检测模型。该模型使用Slim-Neck结构代替原YOLO v8网络的颈部(Neck)结构以降低深度可分离卷积特征提取和融合能力差的缺陷对模型造成的负面影响,在降低模型参数量和计算量的同时不会损失检测的准确度,并且该结构能使模型更好地应用于复杂的草莓种植环境。模型还引入了通道注意力和空间注意力机制(CBAM)以提高病害特征的提取能力同时忽略图片中不相关的信息。最后模型将YOLO v8中的边界框损失函数替换为MPDIoU以提升检测和目标定位的能力。结果表明,本模型在一个含有7类草莓病害的开源数据集可以实现96.5%的平均精度(mAP),同时仅有2.9 M参数量和 7.4 GFLOPs 值,相比于原始YOLO v8n、YOLO v7-tiny、YOLO v6n和YOLO v5s模型的mAP分别提升1.2、1.9、3.7和2.5百分点。改进后的模型具有更高的检测精度和更小的参数量与计算量,可为实际草莓种植环境下的病害检测提供参考。
Abstract:
-

参考文献/References:

[1]梁容,摘译. 全球:十年间草莓产量增长近40%[J]. 中国果业信息,2020(10):48.
[2]宋长年,李红月,董瑞萍,等. 大樱桃病害防治技术研究进展[J]. 现代农业科技,2022(15):115-118,122.
[3]汪京京,张武,刘连忠,等. 农作物病虫害图像识别技术的研究综述[J]. 计算机工程与科学,2014,36(7):1363-1370.
[4]蒋龙泉,鲁帅,冯瑞,等. 基于多特征融合和SVM分类器的植物病虫害检测方法[J]. 计算机应用与软件,2014,31(12):186-190.
[5]Eaganathan U,Sophia J,Luckose V,et al. Identification of sugarcane leaf scorch diseases using K-means clustering segmentation and K-NN based classification[J]. International Journal of Advances in Computer Science and Technology,2014,3(12):11-16.
[6]Li L L,Zhang S J,Wang B. Plant disease detection and classification by deep learning:a review[J]. IEEE Access,2021,9:56683-56698.
[7]Khan A I,Quadri S M K,Banday S,et al. Deep diagnosis:a real-time apple leaf disease detection system based on deep learning[J]. Computers and Electronics in Agriculture,2022,198:107093.
[8]毛锐,张宇晨,王泽玺,等. 利用改进Faster-RCNN识别小麦条锈病和黄矮病[J]. 农业工程学报,2022,38(17):176-185.
[9]Liu J,Wang X W. Tomato diseases and pests detection based on improved YOYO v3 convolutional neural network[J]. Frontiers in Plant Science,2020,11:898.
[10]Nie X,Wang L Y,Ding H X,et al. Strawberry Verticillium wilt detection network based on multi-task learning and attention[J]. IEEE Access,2019,7:170003-170011.
[11]Kim B,Han Y K,Park J H,et al. Improved vision-based detection of strawberry diseases using a deep neural network[J]. Frontiers in Plant Science,2021,11:559172.
[12]Li Y,Wang J C,Wu H R,et al. Detection of powdery mildew on strawberry leaves based on DAC-YOLO v4 model[J]. Computers and Electronics in Agriculture,2022,202:107418.
[13]Zhang Y C,Yu J Y,Chen Y,et al. Real-time strawberry detection using deep neural networks on embedded system (rtsd-net):an edge AI application[J]. Computers and Electronics in Agriculture,2022,192:106586.
[14]Li H L,Li J,Wei H B,et al. Slim-neck by GSConv:a lightweight-design for real-time detector architectures[J]. Journal of Real-Time Image Processing,2024,21(3):62.
[15]Woo S,Park J,Lee J Y,et al. CBAM:convolutional block attention module[C]//European Conference on Computer Vision.Cham:Springer,2018:3-19.
[16]Siliang M,Yong X. MPDIoU:a loss for efficient and accurate bounding box regression[EB/OL]. (2023-06-14)[2023-10-25]. https://arxiv.org/abs/2307.07662.
[17]Redmon J,Divvala S,Girshick R,et al. You only look once:unified,real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas,NV,USA.IEEE,2016:779-788.
[18]Wang C Y,Bochkovskiy A,Liao H Y M. YOLO v7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver,BC,Canada.IEEE,2023:7464-7475.
[19]He K M,Zhang X Y,Ren S Q,et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916.
[20]Feng C J,Zhong Y J,Gao Y,et al. Tood:task-aligned one-stage object detection[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal,QC,Canada.IEEE,2021:3490-3499.
[21]Li X,Wang W H,Wu L J,et al. Generalized focal loss:learning qualified and distributed bounding boxes for dense object detection[J]. Advances in Neural Information Processing Systems,2020,33:21002-21012.
[22]Afzaal U,Bhattarai B,Pandeya Y R,et al. An instance segmentation model for strawberry diseases based on mask R-CNN[J]. Sensors,2021,21(19):6565.
[23]Hu J,Shen L,Sun G. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA.IEEE,2018:7132-7141.
[24]Hou Q B,Zhou D Q,Feng J S. Coordinate attention for efficient mobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville,TN,USA.IEEE,2021:13708-13717.
[25]Liu Y C,Shao Z R,Hoffmann N. Global attention mechanism:retain information to enhance channel-spatial interactions[EB/OL]. (2021-12-10)[2023-10-25]. https://arxiv.org/abs/2112.05561.pdf.
[26]Zhang Q L,Yang Y B. SA-net:shuffle attention for deep convolutional neural networks[C]//ICASSP 2021 - 2021 IEEE International Conference on Acoustics,Speech and Signal Processing. Toronto,ON,Canada.IEEE,2021:2235-2239.
[27]Ouyang D L,He S,Zhang G Z,et al. Efficient multi-scale attention module with cross-spatial learning[C]//ICASSP 2023 - 2023 IEEE International Conference on Acoustics,Speech and Signal Processing. Rhodes Island,Greece.IEEE,2023:1-5.

相似文献/References:

[1]马驰,吴华瑞,于会山.基于YOLOX的穴盘甘蓝病害检测方法[J].江苏农业科学,2023,51(8):193.
 Ma Chi,et al.Detection method of cabbage disease based on YOLOX[J].Jiangsu Agricultural Sciences,2023,51(20):193.
[2]邢鹏康,李久朋.基于小样本学习的马铃薯叶片病害检测[J].江苏农业科学,2023,51(15):203.
 Xing Pengkang,et al.Potato leaf disease detection based on small sample learning[J].Jiangsu Agricultural Sciences,2023,51(20):203.
[3]李志良,李梦霞,董勇,等.基于改进YOLO v8的轻量化玉米害虫识别方法[J].江苏农业科学,2024,52(14):196.
 Li Zhiliang,et al.Lightweight corn pest recognition method based on enhanced YOLO v8[J].Jiangsu Agricultural Sciences,2024,52(20):196.
[4]黄贻望,王国帅,毛志,等.KMeans++与注意力机制融合的苹果叶片病害识别方法[J].江苏农业科学,2024,52(20):190.
 Huang Yiwang,et al.Identification of apple leaf diseases in complex environments through integration of KMeans++ and attention mechanisms[J].Jiangsu Agricultural Sciences,2024,52(20):190.
[5]李龙,李梦霞,李志良.基于改进YOLO v8的水稻害虫识别方法[J].江苏农业科学,2024,52(20):209.
 Li Long,et al.Rice pest identification method based on improved YOLO v8[J].Jiangsu Agricultural Sciences,2024,52(20):209.
[6]高泉,刘笠溶,张洁,等.基于ActNN-YOLO v5s-RepFPN的番茄病害识别及系统设计[J].江苏农业科学,2024,52(20):220.
 Gao Quan,et al.Tomato disease identification and system design based on ActNN-YOLO v5s-RepFPN[J].Jiangsu Agricultural Sciences,2024,52(20):220.
[7]张立强,武玲梅,蒋林利,等.基于改进YOLO v8s的葡萄叶片病害检测[J].江苏农业科学,2024,52(21):221.
 Zhang Liqiang,et al.Detection of grape leaf disease based on improved YOLO v8s[J].Jiangsu Agricultural Sciences,2024,52(20):221.
[8]鲍宜帆,张一丹,樊彩霞,等.基于深度学习的草莓成熟度检测方法[J].江苏农业科学,2025,53(5):89.
 Bao Yifan,et al.Study on strawberry maturity detection method based on deep learning[J].Jiangsu Agricultural Sciences,2025,53(20):89.
[9]沈桂芳,张平.基于改进YOLO v8的温室草莓成熟度智能实时识别[J].江苏农业科学,2025,53(5):62.
 Shen Guifang,et al.Intelligent real-time recognition of strawberry maturity in greenhouses based on improved YOLO v8[J].Jiangsu Agricultural Sciences,2025,53(20):62.
[10]曾林涛,马嘉昕,丁羽,等.基于改进YOLO v8的苹果叶部病害检测方法[J].江苏农业科学,2025,53(5):147.
 Zeng Lintao,et al.An apple leaf disease detection method based on improved YOLO v8[J].Jiangsu Agricultural Sciences,2025,53(20):147.

备注/Memo

备注/Memo:
收稿日期:2023-11-02
基金项目:吉林省科技发展计划(编号:20230201073GX);吉林省重点新兴交叉学科“数字农业”课题。
作者简介:叶琪(2000—),男,福建泉州人,硕士研究生,研究方向为计算机视觉。E-mail:1564633612@qq.com。
通信作者:王丽芬,硕士,副教授,主要从事计算机图形学、软件工程研究,E-mail:306923482@qq.com;马明涛,博士,教授,主要从事电子电路和信号的检测、传输研究,E-mail:35172318@qq.com。
更新日期/Last Update: 2024-10-20