[1]梁容,摘译. 全球:十年间草莓产量增长近40%[J]. 中国果业信息,2020(10):48.
[2]宋长年,李红月,董瑞萍,等. 大樱桃病害防治技术研究进展[J]. 现代农业科技,2022(15):115-118,122.
[3]汪京京,张武,刘连忠,等. 农作物病虫害图像识别技术的研究综述[J]. 计算机工程与科学,2014,36(7):1363-1370.
[4]蒋龙泉,鲁帅,冯瑞,等. 基于多特征融合和SVM分类器的植物病虫害检测方法[J]. 计算机应用与软件,2014,31(12):186-190.
[5]Eaganathan U,Sophia J,Luckose V,et al. Identification of sugarcane leaf scorch diseases using K-means clustering segmentation and K-NN based classification[J]. International Journal of Advances in Computer Science and Technology,2014,3(12):11-16.
[6]Li L L,Zhang S J,Wang B. Plant disease detection and classification by deep learning:a review[J]. IEEE Access,2021,9:56683-56698.
[7]Khan A I,Quadri S M K,Banday S,et al. Deep diagnosis:a real-time apple leaf disease detection system based on deep learning[J]. Computers and Electronics in Agriculture,2022,198:107093.
[8]毛锐,张宇晨,王泽玺,等. 利用改进Faster-RCNN识别小麦条锈病和黄矮病[J]. 农业工程学报,2022,38(17):176-185.
[9]Liu J,Wang X W. Tomato diseases and pests detection based on improved YOYO v3 convolutional neural network[J]. Frontiers in Plant Science,2020,11:898.
[10]Nie X,Wang L Y,Ding H X,et al. Strawberry Verticillium wilt detection network based on multi-task learning and attention[J]. IEEE Access,2019,7:170003-170011.
[11]Kim B,Han Y K,Park J H,et al. Improved vision-based detection of strawberry diseases using a deep neural network[J]. Frontiers in Plant Science,2021,11:559172.
[12]Li Y,Wang J C,Wu H R,et al. Detection of powdery mildew on strawberry leaves based on DAC-YOLO v4 model[J]. Computers and Electronics in Agriculture,2022,202:107418.
[13]Zhang Y C,Yu J Y,Chen Y,et al. Real-time strawberry detection using deep neural networks on embedded system (rtsd-net):an edge AI application[J]. Computers and Electronics in Agriculture,2022,192:106586.
[14]Li H L,Li J,Wei H B,et al. Slim-neck by GSConv:a lightweight-design for real-time detector architectures[J]. Journal of Real-Time Image Processing,2024,21(3):62.
[15]Woo S,Park J,Lee J Y,et al. CBAM:convolutional block attention module[C]//European Conference on Computer Vision.Cham:Springer,2018:3-19.
[16]Siliang M,Yong X. MPDIoU:a loss for efficient and accurate bounding box regression[EB/OL]. (2023-06-14)[2023-10-25]. https://arxiv.org/abs/2307.07662.
[17]Redmon J,Divvala S,Girshick R,et al. You only look once:unified,real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas,NV,USA.IEEE,2016:779-788.
[18]Wang C Y,Bochkovskiy A,Liao H Y M. YOLO v7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver,BC,Canada.IEEE,2023:7464-7475.
[19]He K M,Zhang X Y,Ren S Q,et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916.
[20]Feng C J,Zhong Y J,Gao Y,et al. Tood:task-aligned one-stage object detection[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal,QC,Canada.IEEE,2021:3490-3499.
[21]Li X,Wang W H,Wu L J,et al. Generalized focal loss:learning qualified and distributed bounding boxes for dense object detection[J]. Advances in Neural Information Processing Systems,2020,33:21002-21012.
[22]Afzaal U,Bhattarai B,Pandeya Y R,et al. An instance segmentation model for strawberry diseases based on mask R-CNN[J]. Sensors,2021,21(19):6565.
[23]Hu J,Shen L,Sun G. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA.IEEE,2018:7132-7141.
[24]Hou Q B,Zhou D Q,Feng J S. Coordinate attention for efficient mobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville,TN,USA.IEEE,2021:13708-13717.
[25]Liu Y C,Shao Z R,Hoffmann N. Global attention mechanism:retain information to enhance channel-spatial interactions[EB/OL]. (2021-12-10)[2023-10-25]. https://arxiv.org/abs/2112.05561.pdf.
[26]Zhang Q L,Yang Y B. SA-net:shuffle attention for deep convolutional neural networks[C]//ICASSP 2021 - 2021 IEEE International Conference on Acoustics,Speech and Signal Processing. Toronto,ON,Canada.IEEE,2021:2235-2239.
[27]Ouyang D L,He S,Zhang G Z,et al. Efficient multi-scale attention module with cross-spatial learning[C]//ICASSP 2023 - 2023 IEEE International Conference on Acoustics,Speech and Signal Processing. Rhodes Island,Greece.IEEE,2023:1-5.
[1]马驰,吴华瑞,于会山.基于YOLOX的穴盘甘蓝病害检测方法[J].江苏农业科学,2023,51(8):193.
Ma Chi,et al.Detection method of cabbage disease based on YOLOX[J].Jiangsu Agricultural Sciences,2023,51(20):193.
[2]邢鹏康,李久朋.基于小样本学习的马铃薯叶片病害检测[J].江苏农业科学,2023,51(15):203.
Xing Pengkang,et al.Potato leaf disease detection based on small sample learning[J].Jiangsu Agricultural Sciences,2023,51(20):203.
[3]李志良,李梦霞,董勇,等.基于改进YOLO v8的轻量化玉米害虫识别方法[J].江苏农业科学,2024,52(14):196.
Li Zhiliang,et al.Lightweight corn pest recognition method based on enhanced YOLO v8[J].Jiangsu Agricultural Sciences,2024,52(20):196.
[4]黄贻望,王国帅,毛志,等.KMeans++与注意力机制融合的苹果叶片病害识别方法[J].江苏农业科学,2024,52(20):190.
Huang Yiwang,et al.Identification of apple leaf diseases in complex environments through integration of KMeans++ and attention mechanisms[J].Jiangsu Agricultural Sciences,2024,52(20):190.
[5]李龙,李梦霞,李志良.基于改进YOLO v8的水稻害虫识别方法[J].江苏农业科学,2024,52(20):209.
Li Long,et al.Rice pest identification method based on improved YOLO v8[J].Jiangsu Agricultural Sciences,2024,52(20):209.
[6]高泉,刘笠溶,张洁,等.基于ActNN-YOLO v5s-RepFPN的番茄病害识别及系统设计[J].江苏农业科学,2024,52(20):220.
Gao Quan,et al.Tomato disease identification and system design based on ActNN-YOLO v5s-RepFPN[J].Jiangsu Agricultural Sciences,2024,52(20):220.
[7]张立强,武玲梅,蒋林利,等.基于改进YOLO v8s的葡萄叶片病害检测[J].江苏农业科学,2024,52(21):221.
Zhang Liqiang,et al.Detection of grape leaf disease based on improved YOLO v8s[J].Jiangsu Agricultural Sciences,2024,52(20):221.
[8]鲍宜帆,张一丹,樊彩霞,等.基于深度学习的草莓成熟度检测方法[J].江苏农业科学,2025,53(5):89.
Bao Yifan,et al.Study on strawberry maturity detection method based on deep learning[J].Jiangsu Agricultural Sciences,2025,53(20):89.
[9]沈桂芳,张平.基于改进YOLO v8的温室草莓成熟度智能实时识别[J].江苏农业科学,2025,53(5):62.
Shen Guifang,et al.Intelligent real-time recognition of strawberry maturity in greenhouses based on improved YOLO v8[J].Jiangsu Agricultural Sciences,2025,53(20):62.
[10]曾林涛,马嘉昕,丁羽,等.基于改进YOLO v8的苹果叶部病害检测方法[J].江苏农业科学,2025,53(5):147.
Zeng Lintao,et al.An apple leaf disease detection method based on improved YOLO v8[J].Jiangsu Agricultural Sciences,2025,53(20):147.