|本期目录/Table of Contents|

[1]张立强,武玲梅,蒋林利,等.基于改进YOLO v8s的葡萄叶片病害检测[J].江苏农业科学,2024,52(21):221-228.
 Zhang Liqiang,et al.Detection of grape leaf disease based on improved YOLO v8s[J].Jiangsu Agricultural Sciences,2024,52(21):221-228.
点击复制

基于改进YOLO v8s的葡萄叶片病害检测(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第21期
页码:
221-228
栏目:
农业工程与信息技术
出版日期:
2024-11-05

文章信息/Info

Title:
Detection of grape leaf disease based on improved YOLO v8s
作者:
张立强1武玲梅1蒋林利1黄鸿柳12
1.广西科技师范学院人工智能学院,广西来宾 546199; 2.南京师范大学计算机与电子信息学院/人工智能学院,江苏南京 210023
Author(s):
Zhang Liqianget al
关键词:
葡萄病害YOLO v8注意力机制动态蛇形卷积小目标检测
Keywords:
-
分类号:
S126;TP391.41
DOI:
-
文献标志码:
A
摘要:
针对葡萄叶片病害检测技术存在特征提取能力不足、精度不高、漏检等问题,以葡萄叶片3种病害为研究对象,提出一种基于YOLO v8s改进的检测模型。在主干网引入全局注意力机制,通过融合跨维度信息,增强主干特征提取能力。在主干网末端,引入动态蛇形卷积替换原算法的卷积网络,增强网络对几何变形的感知,以更高的精度捕获图像中复杂几何特征。在输出端改进边框位置回归损失函数,引入Focal-EIoU损失函数,平衡不同类别和不同质量的样本,提高边界框的回归精度。在输出端通过增加小目标检测头,提高算法对小目标的检测性能。结果表明,改进后的模型在mAP@0.5、mAP@0.5 ∶0.95分别达到90.9%、58.0%,相比YOLO v8s提高了4.5、3.1百分点;FPS达到132.6帧/s,满足实时检测要求,并且与其他5种非基线代表性检测模型相比,具有更高的检测精度和速度,为葡萄病害检测提供了一种更优的方法,对于防治葡萄病害具有重要意义。
Abstract:
-

参考文献/References:

[1]蔡全新. 我国葡萄种植产业发展现状及对策[J]. 乡村科技,2020(20):18-19.
[2]王鹏. 基于深度学习的葡萄叶片病害识别方法研究[D]. 杨凌:西北农林科技大学,2022.
[3]Wang Z B,Wang K Y,Pan S H,et al. Segmentation of crop disease images with an improved K-means clustering algorithm[J]. Applied Engineering in Agriculture,2018,34(2):277-289.
[4]Zhang D Y,Chen G,Zhang H H,et al. Integration of spectroscopy and image for identifying fusarium damage in wheat kernels[J]. Spectrochimica Acta(Part A,Molecular and Biomolecular Spectroscopy),2020,236:118344.
[5]Zhang C L,Zhang S W,Yang J C,et al. Apple leaf disease identification using genetic algorithm and correlation based feature selection method[J]. Int J Agric & Biol Eng,2017,10(2):74-83.
[6]Ren S Q,He K M,Girshick R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
[7]李就好,林乐坚,田凯,等. 改进 Faster R-CNN 的田间苦瓜叶部病害检测[J]. 农业工程学报,2020,36(12):179-185.
[8]文斌,曹仁轩,杨启良,等. 改进YOLO v3算法检测三七叶片病害[J]. 农业工程学报,2022,38(3):164-172.
[9]孙丰刚,王云露,兰鹏,等. 基于改进YOLO v5s和迁移学习的苹果果实病害识别方法[J]. 农业工程学报,2022,38(11):171-179.
[10]雷建云,叶莎,夏梦,等. 基于改进YOLO v4的葡萄叶片病害检测[J]. 中南民族大学学报(自然科学版),2022,41(6):712-719.
[11]苏俊楷,段先华,叶赵兵. 改进YOLO v5算法的玉米病害检测研究[J]. 计算机科学与探索,2023,17(4):933-941.
[12]Niu Z Y,Zhong G Q,Yu H. A review on the attention mechanism of deep learning[J]. Neurocomputing,2021,452:48-62.
[13]Hu J,Shen L,Sun G. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA:IEEE,2018:7132-7141.
[14]Woo S,Park J,Lee J Y,et al. CBAM:convolutional block attention module[M]//Lecture notes in computer science.Cham:Springer International Publishing,2018:3-19.
[15]Park J,Woo S,Lee J Y,et al. BAM:bottleneck attention module[EB/OL]. [2024-02-11].http://arxiv.org/abs/1807.06514 .
[16]Misra D,Nalamada T,Arasanipalai A U,et al. Rotate to attend:convolutional triplet attention module[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa:IEEE,2021:3139-3148.
[17]Liu Y C,Shao Z R,Hoffmann N.Global attention mechanism:retain information to enhance channel-spatial interactions[EB/OL].(2021-10-10)[2024-04-10].https://arxiv.org/pdf/2112.05561.
[18]Qi Y L,He Y T,Qi X M,et al. Dynamic snake convolution based on topological geometric constraints for tubular structure segmentation[C]//2023 IEEE/CVF International Conference on Computer Vision (ICCV). Paris:IEEE,2023:6047-6056.
[19]Yu J H,Jiang Y N,Wang Z Y,et al. UnitBox:an advanced object detection network[C]//Proceedings of the 24th ACM international conference on Multimedia.Amsterdam The Netherlands.ACM,2016:516-520.
[20]Rezatofighi H,Tsoi N,Gwak J,et al. Generalized intersection over union:a metric and a loss for bounding box regression[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Long Beach,CA,USA:IEEE,2019:658-666.
[21]Zheng Z H,Wang P,Liu W,et al. Distance-IoU loss:faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence,2020,34(7):12993-13000.
[22]李滨,樊健. 基于YOLO v5的水稻害虫分类[J]. 江苏农业科学,2024,52(2):175-182.
[23]Lin T Y,Goyal P,Girshick R,et al. Focal loss for dense object detection[C]//2017 IEEE International Conference on Computer Vision (ICCV).Venice,Italy:IEEE,2017:2999-3007.

相似文献/References:

[1]王利伟,徐晓辉,苏彦莽,等.基于计算机视觉的葡萄叶部病害识别研究[J].江苏农业科学,2017,45(23):222.
 Wang Liwei,et al.Study on recognition of grape leaf diseases based on computer vision[J].Jiangsu Agricultural Sciences,2017,45(21):222.
[2]戴久竣,马肄恒,吴坚,等.基于改进残差网络的葡萄叶片病害识别[J].江苏农业科学,2023,51(5):208.
 Dai Jiujun,et al.Grape leaf disease identification based on improved residual network[J].Jiangsu Agricultural Sciences,2023,51(21):208.
[3]许文燕.基于轻量化神经网络的葡萄叶部病害检测装置研制[J].江苏农业科学,2023,51(19):181.
 Xu Wenyan.Development of grape leaf disease detection device based on lightweight neural network[J].Jiangsu Agricultural Sciences,2023,51(21):181.
[4]李志良,李梦霞,董勇,等.基于改进YOLO v8的轻量化玉米害虫识别方法[J].江苏农业科学,2024,52(14):196.
 Li Zhiliang,et al.Lightweight corn pest recognition method based on enhanced YOLO v8[J].Jiangsu Agricultural Sciences,2024,52(21):196.
[5]叶琪,王丽芬,马明涛,等.基于改进YOLO v8的草莓病害检测方法[J].江苏农业科学,2024,52(20):250.
 Ye Qi,et al.Strawberry disease detection method based on improved YOLO v8[J].Jiangsu Agricultural Sciences,2024,52(21):250.
[6]李龙,李梦霞,李志良.基于改进YOLO v8的水稻害虫识别方法[J].江苏农业科学,2024,52(20):209.
 Li Long,et al.Rice pest identification method based on improved YOLO v8[J].Jiangsu Agricultural Sciences,2024,52(21):209.
[7]鲍宜帆,张一丹,樊彩霞,等.基于深度学习的草莓成熟度检测方法[J].江苏农业科学,2025,53(5):89.
 Bao Yifan,et al.Study on strawberry maturity detection method based on deep learning[J].Jiangsu Agricultural Sciences,2025,53(21):89.
[8]沈桂芳,张平.基于改进YOLO v8的温室草莓成熟度智能实时识别[J].江苏农业科学,2025,53(5):62.
 Shen Guifang,et al.Intelligent real-time recognition of strawberry maturity in greenhouses based on improved YOLO v8[J].Jiangsu Agricultural Sciences,2025,53(21):62.
[9]刘宇雄,兰艳亭,陈晓栋.基于级联式分组注意力机制的葡萄病害识别模型[J].江苏农业科学,2025,53(5):121.
 Liu Yuxiong,et al.Grape disease recognition model based on cascaded group attention mechanism[J].Jiangsu Agricultural Sciences,2025,53(21):121.
[10]曾林涛,马嘉昕,丁羽,等.基于改进YOLO v8的苹果叶部病害检测方法[J].江苏农业科学,2025,53(5):147.
 Zeng Lintao,et al.An apple leaf disease detection method based on improved YOLO v8[J].Jiangsu Agricultural Sciences,2025,53(21):147.

备注/Memo

备注/Memo:
收稿日期:2024-04-18
基金项目:国家自然科学基金(编号:42065004);广西高校中青年教师科研基础能力提升项目(编号:2023KY0884);广西创新驱动发展专项(科技重大专项)(编号:桂科AA21077018)。
作者简介:张立强(1988—),男,湖南湘潭人,硕士,高级工程师,主要从事农业病害、目标检测、深度学习研究。E-mail:1293320212@qq.com。
通信作者:蒋林利,硕士,教授,主要从事农业信息化、神经网络研究。E-mail:gksresearch@163.com。
更新日期/Last Update: 2024-11-05