|本期目录/Table of Contents|

[1]杨国亮,盛杨杨,洪鑫芳,等.基于改进YOLO v5s的果园番茄采摘检测方法[J].江苏农业科学,2024,52(24):187-195.
 Yang Guolang,et al.A detection method for orchard tomato picking based on improved YOLO v5s[J].Jiangsu Agricultural Sciences,2024,52(24):187-195.
点击复制

基于改进YOLO v5s的果园番茄采摘检测方法(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第24期
页码:
187-195
栏目:
农业工程与信息技术
出版日期:
2024-12-20

文章信息/Info

Title:
A detection method for orchard tomato picking based on improved YOLO v5s
作者:
杨国亮盛杨杨洪鑫芳余帅英张佳琦
江西理工大学电气工程与自动化学院,江西赣州 341000
Author(s):
Yang Guolanget al
关键词:
番茄检测自适应RAAM模块C3DS-STSWD_LossBiFormer
Keywords:
-
分类号:
TP391.41
DOI:
-
文献标志码:
A
摘要:
针对复杂果园环境下,不同生长周期的番茄容易受叶片、藤蔓的遮挡,以及多果实之间相互遮挡进而导致的误检、漏检、难检问题,提出了一种基于改进YOLO v5s的番茄生长周期采摘实时检测方法。首先,设计多尺度反向自适应注意力模块RAAM(Reversed Adaptive Attention Module),用于解决原模型连续下采样丢失上下文信息的问题,并可以提升特征图分辨率用于高层语义信息的加权融合。其次,在Neck中设计C3DS-ST(C3 DySnakeConv-Swin Transformer)模块替换原有C3,增大局部区域坐标特征感知能力,适应整体番茄结构形状特征。最后,设计新的边框损失函数SWD_Loss,结合BiFormer注意力机制,使网络更加关注敏感区域,提高模型对遮挡部分的漏检率和多果实遮挡的检测精度。试验结果表明,改进后的模型在测试集上对番茄检测平均精度达到93.7%,相比于原模型提升2.1%,对图片中遮挡部分效果明显改善。同时,检测速度达到了50 帧/s,具有非常良好的应用前景。
Abstract:
-

参考文献/References:

[1]周明,李常保. 我国番茄种业发展现状及展望[J]. 蔬菜,2022(5):6-10.
[2]潘肖楠,张玥,耿宝龙,等. 苹果采摘机器人的结构设计与分析[J]. 中国设备工程,2023(18):38-40.
[3]王焱清,汤旸,杨光友. 面向机器人柑橘采摘的控制系统设计与试验[J]. 中国农机化学报,2023,44(9):146-153.
[4]张勤,庞月生,李彬. 基于实例分割的番茄串视觉定位与采摘姿态估算方法[J]. 农业机械学报,2023,54(10):205-215.
[5]宋怀波,尚钰莹,何东健. 果实目标深度学习识别技术研究进展[J]. 农业机械学报,2023,54(1):1-19.
[6]Redmon J,Divvala S,Girshick R,et al. You only look once:unified,real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas:IEEE,2016:779-788.
[7]Liu W,Anguelov D,Erhan D,et al. SSD:single shot MultiBox detector[M]//Leibe B,Matas J,Sebe N,et al. Lecture notes in computer science. Cham:Springer International Publishing,2016:21-37.
[8]王勇,陶兆胜,石鑫宇,等. 基于改进YOLO v5s的不同成熟度苹果目标检测方法[J]. 南京农业大学学报,2024,47(3):602-611.
[9]Fan Y C,Zhang S Y,Feng K,et al. Strawberry maturity recognition algorithm combining dark channel enhancement and YOLO v5[J]. Sensors,2022,22(2):419.
[10]Girshick R,Donahue J,Darrell T,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus:IEEE,2014:580-587.
[11]张文静,赵性祥,丁睿柔,等. 基于Faster R-CNN算法的番茄识别检测方法[J]. 山东农业大学学报(自然科学版),2021,52(4):624-630.
[12]岳有军,孙碧玉,王红君,等. 基于级联卷积神经网络的番茄果实目标检测[J]. 科学技术与工程,2021,21(6):2387-2391.
[13]Wang J F,Chen Y,Dong Z K,et al. Improved YOLO v5 network for real-time multi-scale traffic sign detection[J]. Neural Computing and Applications,2023,35(10):7853-7865.
[14]Shi W Z,Caballero J,Huszár F,et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas:IEEE,2016:1874-1883.
[15]Qi Y L,He Y T,Qi X M,et al. Dynamic snake convolution based on topological geometric constraints for tubular structure segmentation[C]//2023 IEEE/CVF International Conference on Computer Vision (ICCV).Paris:IEEE,2023:6047-6056.
[16]Zou P,Yang K J,Liang C. Improving real-timedetection of lightweight irregular driving behavior in YOLO v5[J]. Computer Engineering and Applications,2023,59(13):186-193.
[17]Wang J W,Xu C,Yang W,et al. A normalized Gaussian Wasserstein distance for tiny object detection[EB/OL]. arXiv preprint,arXic:2110.13389(2021-10-16)[2023-10-10]. http://arxiv.org/abs/2110.13389v1.

相似文献/References:

[1]杨国亮,王吉祥,聂子玲.基于改进型YOLOv5s的番茄实时识别方法[J].江苏农业科学,2023,51(15):187.
 Yang Guoliang,et al.A real-time tomato recognition method based on improved YOLOv5s[J].Jiangsu Agricultural Sciences,2023,51(24):187.

备注/Memo

备注/Memo:
收稿日期:2023-12-07
基金项目:江西省教育厅科技计划项目(编号:GJJ210861、GJJ200879)。
作者简介:杨国亮(1973—),男,江西宜春人,博士,教授,主要从事人工智能和模式识别研究。E-mail:ygliang30@126.com。
通信作者:盛杨杨,硕士研究生,主要从事人工智能和模式识别研究。E-mail:syy505093@163.com。
更新日期/Last Update: 2024-12-20