[1]Genchi G,Sinicropi M S,Lauria G,et al. The effects of cadmium toxicity[J]. International Journal of Environmental Research and Public Health,2020,17(11):3782.
[2]杨红霞,陈俊良,刘崴. 镉对植物的毒害及植物解毒机制研究进展[J]. 江苏农业科学,2019,47(2):1-8.
[3]朱秀红,韩晓雪,温道远,等. 镉胁迫对油菜亚细胞镉分布和镉化学形态的影响[J]. 北方园艺,2020(10):1-9.
[4]Wu X W,Tian H,Li L,et al. Higher Cd-accumulating oilseed rape has stronger Cd tolerance due to stronger Cd fixation in pectin and hemicellulose and higher Cd chelation[J]. Environmental Pollution,2021,285:117218.
[5]Zhang Z H,Zhou T,Tang T J,et al. A multiomics approach reveals the pivotal role of subcellular reallocation in determining rapeseed resistance to cadmium toxicity[J]. Journal of Experimental Botany,2019,70(19):5437-5455.
[6]Touceda-González M,Brader G,Antonielli L,et al. Combined amendment of immobilizers and the plant growth-promoting strain Burkholderia phytofirmans PsJN favours plant growth and reduces heavy metal uptake[J]. Soil Biology and Biochemistry,2015,91:140-150.
[7]Fatima G,Raza A M,Hadi N,et al. Cadmium in human diseases:its more than just a mere metal[J]. Indian Journal of Clinical Biochemistry,2019,34(4):371-378.
[8]Jia H L,Wang X H,Wei T,et al. Accumulation and fixation of Cd by tomato cell wall pectin under Cd stress[J]. Environmental and Experimental Botany,2019,167:103829.
[9]Noor I,Sohail H,Sun J X,et al. Heavy metal and metalloid toxicity in horticultural plants:tolerance mechanism and remediation strategies[J]. Chemosphere,2022,303(Pt 3):135196.
[10]Zhang J L,Zhu Y C,Yu L J,et al. Research advances in cadmium uptake,transport and resistance in rice (Oryza sativa L.)[J]. Cells,2022,11(3):569.
[11]彭秋,李桃,徐卫红,等. 不同品种辣椒镉亚细胞分布和化学形态特征差异[J]. 环境科学,2019,40(7):3347-3354.
[12]Xie M D,Chen W Q,Lai X C,et al. Metabolic responses and their correlations with phytochelatins in Amaranthus hypochondriacus under cadmium stress[J]. Environmental Pollution,2019,252(Pt B):1791-1800.
[13]Meyer C L,Juraniec M,Huguet S,et al. Intraspecific variability of cadmium tolerance and accumulation,and cadmium-induced cell wall modifications in the metal hyperaccumulator Arabidopsis halleri[J]. Journal of Experimental Botany,2015,66(11):3215-3227.
[14]Peng J S,Wang Y J,Ding G,et al. A pivotal role of cell wall in cadmium accumulation in the Crassulaceae hyperaccumulator Sedum plumbizincicola[J]. Molecular Plant,2017,10(5):771-774.
[15]Zhu C Q,Cao X C,Zhu L F,et al. Ammonium mitigates Cd toxicity in rice (Oryza sativa) via putrescine-dependent alterations of cell wall composition[J]. Plant Physiology and Biochemistry,2018,132:189-201.
[16]Krzesowska M,Rabda I,Basińska A,et al. Pectinous cell wall thickenings formation:a common defense strategy of plants to cope with Pb[J]. Environmental Pollution,2016,214:354-361.
[17]Gutsch A,Sergeant K,Keunen E,et al. Does long-term cadmium exposure influence the composition of pectic polysaccharides in the cell wall of Medicago sativa stems?[J]. BMC Plant Biology,2019,19(1):271.
[18]Vatehová Z,Malovíková A,Kollárová K,et al. Impact of cadmium stress on two maize hybrids[J]. Plant Physiology and Biochemistry,2016,108:90-98.
[19]Xiao Y,Wu X W,Liu D,et al. Cell wall polysaccharide-mediated cadmium tolerance between two Arabidopsis thaliana ecotypes[J]. Frontiers in Plant Science,2020,11:473.
[20]Yu H Y,Wu Y,Huang H G,et al. The predominant role of pectin in binding Cd in the root cell wall of a high Cd accumulating rice line (Oryza sativa L.)[J]. Ecotoxicology and Environmental Safety,2020,206:111210.
[21]Liu B,Chen L,Chen S B,et al. Subcellular Cd accumulation characteristic in root cell wall of rice cultivars with different sensitivities to Cd stress in soil[J]. Journal of Integrative Agriculture,2016,15(9):2114-2122.
[22]Wan J X,Zhu X F,Wang Y Q,et al. Xyloglucan fucosylation modulates Arabidopsis cell wall hemicellulose aluminium binding capacity[J]. Scientific Reports,2018,8:428.
[23]Chen G C,Liu Y Q,Wang R M,et al. Cadmium adsorption by willow root:the role of cell walls and their subfractions[J]. Environmental Science and Pollution Research,2013,20(8):5665-5672.
[24]Krzesowska M. The cell wall in plant cell response to trace metals:polysaccharide remodeling and its role in defense strategy[J]. Acta Physiologiae Plantarum,2011,33(1):35-51.
[25]邹学校,马艳青,戴雄泽,等. 辣椒在中国的传播与产业发展[J]. 园艺学报,2020,47(9):1715-1726.
[26]张子峰. 我国辣椒产业发展现状、主要挑战与应对之策[J]. 北方园艺,2023(14):153-158.
[27]林巧,辛竹琳,孔令博,等. 我国辣椒产业发展现状及育种应对措施[J]. 中国农业大学学报,2023,28(5):82-95.
[28]Yang L P,Zhu J,Wang P,et al. Effect of Cd on growth,physiological response,Cd subcellular distribution and chemical forms of Koelreuteria paniculata[J]. Ecotoxicology and Environmental Safety,2018,160:10-18.
[29]Zhu X F,Lei G J,Jiang T,et al. Cell wall polysaccharides are involved in P-deficiency-induced Cd exclusion in Arabidopsis thaliana[J]. Planta,2012,236(4):989-997.
[30]Li T Q,Tao Q,Shohag M J I,et al. Root cell wall polysaccharides are involved in cadmium hyperaccumulation in Sedum alfredii[J]. Plant and Soil,2015,389(1):387-399.
[31]崔广娟,曹华元,陈康,等. 镉胁迫对4种基因型大豆生长和体内元素分布的影响[J]. 华南农业大学学报,2020,41(5):49-57.
[32]闫雷,张思佳,孟庆尧,等. Cd胁迫对高、低积累白菜生理生化特性的影响[J]. 北方园艺,2021(20):1-10.
[33]Zhang Z,Liu C F,Wang X M,et al. Cadmium-induced alterations in morpho-physiology of two peanut cultivars differing in cadmium accumulation[J]. Acta Physiologiae Plantarum,2013,35(7):2105-2112.
[34]Wang Y M,Yang R X,Zheng J Y,et al. Exogenous foliar application of fulvic acid alleviate cadmium toxicity in lettuce (Lactuca sativa L.)[J]. Ecotoxicology and Environmental Safety,2019,167:10-19.
[35]Todorenko D,Volgusheva A,Timofeev N,et al. Multiple in vivo effects of cadmium on photosynthetic electron transport in pea plants[J]. Photochemistry and Photobiology,2021,97(6):1516-1526.
[36]贾月慧,韩莹琰,刘杰,等. 生菜对镉胁迫的生理响应及体内镉的累积分布[J]. 农业环境科学学报,2018,37(8):1610-1618.
[37]潘攀,刘贝贝,范成五,等. 不同品种辣椒镉积累特性与生理抗性和镉亚细胞分布关系[J]. 西南农业学报,2022,35(3):623-631.
[38]Lei G J,Sun L,Sun Y,et al. Jasmonic acid alleviates cadmium toxicity in Arabidopsis via suppression of cadmium uptake and translocation[J]. Journal of Integrative Plant Biology,2020,62(2):218-227.
[39]张立,王杰. 不同硒形态对镉胁迫下油菜镉亚细胞分布、化学形态及硒累积的影响[J]. 江苏农业科学,2022,50(17):259-264.
[40]Sun Y,Ye H,Wei Z B,et al. Root cell walls and phytochelatins in low-cadmium cultivar of Brassica parachinensis[J]. Pedosphere,2020,30(3):426-432.
[41]Guo X Y,Luo J P,Du Y L,et al. Coordination between root cell wall thickening and pectin modification is involved in cadmium accumulation in Sedum alfredii[J]. Environmental Pollution,2021,268(Pt A):115665.
[42]Wang L,Li R,Yan X X,et al. Pivotal role for root cell wall polysaccharides in cultivar-dependent cadmium accumulation in Brassica chinensis L.[J]. Ecotoxicology and Environmental Safety,2020,194:110369.
[43]Wang R S,Liang R H,Dai T T,et al. Pectin-based adsorbents for heavy metal ions:a review[J]. Trends in Food Science & Technology,2019,91:319-329.
[44]Wu S P,Dai X Z,Kan J R,et al. Fabrication of carboxymethyl chitosan-hemicellulose resin for adsorptive removal of heavy metals from wastewater[J]. Chinese Chemical Letters,2017,28(3):625-632.
[45]Huang J,Jing H K,Zhang Y,et al. Melatonin reduces cadmium accumulation via mediating the nitric oxide accumulation and increasing the cell wall fixation capacity of cadmium in rice[J]. Journal of Hazardous Materials,2023,445:130529.
[1]刘金兵,王述彬,潘宝贵,等.辣椒新品种苏椒20号的选育与栽培技术[J].江苏农业科学,2013,41(11):110.
Liu Jinbing,et al.Breeding and cultivation techniques of new hot pepper cultivar “Sujiao No.20”[J].Jiangsu Agricultural Sciences,2013,41(1):110.
[2]陈素娟,陈国元,马运涛.醋糟混合基质在辣椒育苗中的应用[J].江苏农业科学,2013,41(11):178.
Chen Sujuan,et al.Application of vinegar residue mixed matrix in cultivation of pepper seedlings[J].Jiangsu Agricultural Sciences,2013,41(1):178.
[3]吴永成,郑佳秋,郭军,等.涝害对辣椒幼苗生理活性的影响[J].江苏农业科学,2013,41(12):156.
Wu Yongcheng,et al.Effect of waterlogging catastrophe on physiological activity of pepper seedlings[J].Jiangsu Agricultural Sciences,2013,41(1):156.
[4]周玲玲,张黎杰,姜若勇,等.不同墙体材料的日光温室环境变化及其对辣椒产量与品质的影响[J].江苏农业科学,2014,42(02):339.
Zhou Lingling,et al.Effects of different materials of greenhouse walls on environmental factors and yield and quality of pepper[J].Jiangsu Agricultural Sciences,2014,42(1):339.
[5]徐婉莉,裴徐梨,荆赞革,等.辣椒actin基因电子克隆与生物信息学分析[J].江苏农业科学,2014,42(05):46.
Xu Wanli,et al.In silico cloning and bioinformatics analysis of actin gene in Capsicum annum L.[J].Jiangsu Agricultural Sciences,2014,42(1):46.
[6]杨春艳,刘飞,吉恒,等.辣椒疫病的傅里叶变换红外光谱研究[J].江苏农业科学,2014,42(06):113.
Yang Chunyan,et al.Study on Fourier transform infrared spectroscopy of pepper phytophthora blight[J].Jiangsu Agricultural Sciences,2014,42(1):113.
[7]祁建波,张永吉,张永泰,等.耐低温弱光辣椒新品种扬椒5号的选育[J].江苏农业科学,2014,42(10):153.
Qi Jianbo,et al.Breeding of new pepper cultivar“Yangjiao No.5”with tolerance to low-temperature and low light-intensity[J].Jiangsu Agricultural Sciences,2014,42(1):153.
[8]李屹,韩睿,王丽慧,等.菊芋叶片提取物对辣椒疫霉菌的抑菌效果及盆栽验证试验[J].江苏农业科学,2015,43(01):139.
Li Yi,et al.Antibacterial effect of Helianthus tuberosus leaf extract on Phytophthora capsici and its pot experiment[J].Jiangsu Agricultural Sciences,2015,43(1):139.
[9]吴红艳,冯 敏,王志学,等.秸秆还田对辣椒根系活力和植株不同部位硅含量的影响[J].江苏农业科学,2015,43(02):153.
Wu Hongyan,et al.Effects of straw returning to field on silicon content in different parts of dried red pepper and root vigor[J].Jiangsu Agricultural Sciences,2015,43(1):153.
[10]胡新燕,冯 营,孙亚伟,等.徐淮地区设施苦瓜—辣椒高效种植模式[J].江苏农业科学,2015,43(02):168.
Hu Xinyan,et al.Protected cultivation mode of bitter gourd and capsicum with high efficiency in Xuhuai area[J].Jiangsu Agricultural Sciences,2015,43(1):168.