|本期目录/Table of Contents|

[1]刘灿,邹娣,董思,等.1株耐锑根际促生菌的筛选鉴定及对锑胁迫下油菜种子萌发的影响[J].江苏农业科学,2025,53(1):262-270.
 Liu Can,et al.Screening and identification of an antimony-tolerant rhizosphere growth-promoting bacteria and its effect on seed germination of rapeseed under antimony stress[J].Jiangsu Agricultural Sciences,2025,53(1):262-270.
点击复制

1株耐锑根际促生菌的筛选鉴定及对锑胁迫下油菜种子萌发的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第53卷
期数:
2025年第1期
页码:
262-270
栏目:
资源与环境
出版日期:
2025-01-05

文章信息/Info

Title:
Screening and identification of an antimony-tolerant rhizosphere growth-promoting bacteria and its effect on seed germination of rapeseed under antimony stress
作者:
刘灿邹娣董思陈嘉懿白婧郑玉
湖南人文科技学院农业与生物技术学院,湖南娄底 417000
Author(s):
Liu Canet al
关键词:
锑胁迫耐锑根际促生菌A-73-1促生特性油菜种子萌发
Keywords:
-
分类号:
S634.304;S182;X53
DOI:
-
文献标志码:
A
摘要:
从锡矿山优势植物金荞麦(Fagopyrum dibotrys)根际土壤中筛选出1株耐锑根际促生菌A-73-1,对该菌株的菌落形态进行观察,分析该菌株在锑胁迫下的潜在促生能力,同时通过种子萌发试验,探究锑胁迫下该菌株对油菜种子萌发的影响。结合菌落形态、生理生化特征、16S rDNA序列测序,鉴定该菌株为好氧革兰氏阴性菌,属贪铜菌 (Cupriavidus metalliduran)。 菌株IAA产量最高为93.33 μg/mL;在243.52 mg/L锑胁迫下,最大无机溶磷量为 445.61 μg/mL,ACC脱氨酶产量最高为0.047 86 U/mg。在不同浓度锑(20、40、60 mg/L)胁迫下观察油菜种子的萌发结果,与对照组(不加锑)相比,接种 A-73-1后,幼苗的根长、茎长、鲜重、干重等生物量指标均显著提升,根系抗氧化酶活性显著提升,丙二醛含量降低;种子萌发后根、茎、叶的锑含量显著降低,尤其是在60 mg/L锑胁迫下,分别降低42.97%、48.36%、7799%。菌株A-73-1有优良的促生能力,并能提高锑胁迫下油菜幼苗的抗逆性,期待本研究结果可以为进一步研发耐锑促生菌剂修复锑污染土壤提供理论依据,同时为“边生产边修复”的修复策略提供潜在解决方案。
Abstract:
-

参考文献/References:

[1]Deng R J,Chen Y L,Deng X P,et al. A critical review of resistance and oxidation mechanisms of Sb-oxidizing bacteria for the bioremediation of Sb(Ⅲ) pollution[J]. Frontiers in Microbiology,2021,12:738596.
[2]Bai J,Zhang W,Liu W Y,et al. Implications of soil potentially toxic elements contamination,distribution and health risk at hunans xikuangshan mine[J]. Processes,2021,9(9):1532.
[3]莫昌琍,李家有,肖超. 独山锑矿区农用土壤锑污染状况研究[C]//中国环境科学学会. 2015年中国环境科学学会学术年会. 深圳,2015:4.
[4]陈秋平,胥思勤,孙浩然,等. 锑矿区土壤As和Sb形态分布及生态风险评价[J]. 地球与环境,2014,42(6):773-778.
[5]任杰,刘晓文,李杰,等. 我国锑的暴露现状及其环境化学行为分析[J]. 环境化学,2020,39(12):3436-3449.
[6]Zhu Y M,Yang J G,Wang L Z,et al. Factors influencing the uptake and speciation transformation of antimony in the soil-plant system,and the redistribution and toxicity of antimony in plants[J]. The Science of the Total Environment,2020,738:140232.
[7]Zeng S Y,Ma J,Yang Y J,et al. Spatial assessment of farmland soil pollution and its potential human health risks in China[J]. The Science of the Total Environment,2019,687:642-653.
[8]Song P P,Xu D,Yue J Y,et al. Recent advances in soil remediation technology for heavy metal contaminated sites:a critical review[J]. The Science of the Total Environment,2022,838(Pt 3):156417.
[9]屠兴坤. 土壤重金属锑污染修复研究进展[J]. 广东化工,2021,48(24):93-94,115.
[10]张譞,郭婧. 土壤锑污染及其修复技术[J]. 工程技术研究,2021,6(15):249-250.
[11]赵云峰,张涛,田志君,等. 矿区周边重金属污染土壤植物修复技术研究进展[J]. 城市地质,2020,15(1):22-33.
[12]范连益,惠荣奎,邓力超,等. 湖南油菜产业发展的现状、问题与对策[J]. 湖南农业科学,2020(4):80-83,87.
[13]Ren X M,Guo S J,Tian W,et al. Effects of plant growth-promoting bacteria (PGPB) inoculation on the growth,antioxidant activity,Cu uptake,and bacterial community structure of rape (Brassica napus L.) grown in Cu-contaminated agricultural soil[J]. Frontiers in Microbiology,2019,10:1455.
[14]Zhang J W,Cao X R,Yao Z Y,et al. Phytoremediation of Cd-contaminated farmland soil via various Sedum alfredii-oilseed rape cropping systems:efficiency comparison and cost-benefit analysis[J]. Journal of Hazardous Materials,2021,419:126489.
[15]孙刚,刘针延,王琪,等. 不同油菜品种对有色金属冶炼区土壤重金属吸收累积研究[J]. 分子植物育种,2022:1-11(2022-03-25)[2023-11-25]. http://kns.cnki.net/kcms/detail/46.1068.S.20220324.1643.016.html.
[16]Vocciante M,Grifoni M,Fusini D,et al. The role of plant growth-promoting rhizobacteria (PGPR) in mitigating plants environmental stresses[J]. Applied Sciences,2022,12(3):1231.
[17]Goswami D,Thakker J N,Dhandhukia P C. Portraying mechanics of plant growth promoting rhizobacteria (PGPR):a review[J]. Cogent Food & Agriculture,2016,2(1):1127500.
[18]Basu A,Prasad P,Das S N,et al. Plant growth promoting rhizobacteria (PGPR) as green bioinoculants:recent developments,constraints,and prospects[J]. Sustainability,2021,13(3):1140.
[19]Pramanik K,Mitra S,Sarkar A,et al. Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092[J]. Journal of Hazardous Materials,2018,351:317-329.
[20]Liaquat F,Munis M F H,Arif S,et al. Cd-tolerant SY-2 strain of Stenotrophomonas maltophilia:a potential PGPR,isolated from the Nanjing mining area in China[J]. 3 Biotech,2020,10(12):519.
[21]李玲玲. 阳谷县麦田杂草发生现状分析[J]. 基层农技推广,2020,8(11):16-18.
[22]王威,Toe T,张亚,等. 一株烟草肠杆菌(Enterobacter tabaci)S4菌株的鉴定及其效果测定[J]. 农业资源与环境学报,2020,37(3):407-412.
[23]Weeger W,Lièvremont D,Perret M,et al. Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment[J]. Biometals,1999,12(2):141-149.
[24]杨统一,杜秋霞,刘静霏,等. 一株桑树根际促生菌的筛选鉴定及促生性能研究[J]. 湖北农业科学,2021,60(1):80-84,146.
[25]东秀珠,蔡妙英. 常见细菌系统鉴定手册[M]. 北京:科学出版社,2001:372-384.
[26]吴丹,张志鹏,马玉超. 铅锌矿区耐砷细菌的分离、鉴定及性质研究[J]. 生物技术通报,2017,33(5):210-218.
[27]张东艳,刘晔,吴越,等. 花生根际产IAA菌的筛选鉴定及其效应研究[J]. 中国油料作物学报,2016,38(1):104-110.
[28]Honma M,Shimomura T. Metabolism of 1-aminocyclopropane-1-carboxylic acid[J]. Agricultural and Biological Chemistry,1978,42(10):1825-1831.
[29]Saleh S S,Glick B R. Involvement of gacS and rpoS in enhancement of the plant growth-promoting capabilities of Enterobacter cloacae CAL2 and UW4[J]. Canadian Journal of Microbiology,2001,47(8):698-705.
[30]吕俊,于存. 一株高效溶磷伯克霍尔德菌的筛选鉴定及对马尾松幼苗的促生作用[J]. 应用生态学报,2020,31(9):2923-2934.
[31]Wei G F,Pan L,Du H M,et al. ERIC-PCR fingerprinting-based community DNA hybridization to pinpoint genome-specific fragments as molecular markers to identify and track populations common to healthy human guts[J]. Journal of Microbiological Methods,2004,59(1):91-108.
[32]李姗颖,张立鑫,李梅. 高效锑氧化菌的筛选鉴定及其对土壤中锑迁移转化的影响[J]. 环境工程学报,2022,16(5):1602-1609.
[33]杜辉辉,刘新,陶洁,等. 3种耐锑土壤细菌的筛选及对锑的吸附研究[J]. 环境科学学报,2020,40(6):2205-2211.
[34]聂孝红,尹昊,郭东矗,等. 四株耐锑细菌的生物学特性及其对油菜在锑污染土壤中的促生作用[J]. 生态学杂志,2017,36(6):1658-1666.
[35]Jha C K,Sharma P,Shukla A,et al. Microbial enzyme,1-aminocyclopropane-1-carboxylic acid (ACC) deaminase:an elixir for plant under stress[J]. Physiological and Molecular Plant Pathology,2021,115:101664.
[36]王琪媛,王甲辰,叶磊,等. 含ACC脱氨酶的根际细菌提高植物抗盐性的研究进展[J]. 生物技术通报,2021,37(2):174-186.
[37]姚强,董晓霞,宫志远,等. 滨海盐碱地产ACC脱氨酶细菌的筛选及根际促生研究[J]. 山东农业科学,2020,52(2):54-58.
[38]李艳楠,袁存霞,张肖冲,等. 耐多种重金属细菌的筛选、鉴定和酶活测定[J]. 环境科学与技术,2021,44(10):44-52.
[39]葛坤,王培军,邵海林,等. 重金属胁迫对植物生理生化的影响及其抗性机理研究[J]. 山西林业科技,2021,50(3):43-46.
[40]辛树权,母若雨,时东方,等. 一株产多胺菌的分离及NaCl胁迫下对黄瓜幼苗生长的影响[J]. 吉林农业大学学报,2017,39(6):675-682.
[41]史雅甜. Cd、Pb及其复合污染胁迫对羊蹄生长和生理特性的影响[D]. 南昌:江西师范大学,2017:40-41.
[42]Zheng Y,Tang J Q,Liu C,et al. Alleviation of metal stress in rape seedlings (Brassica napus L.) using the antimony-resistant plant growth-promoting rhizobacteria Cupriavidus sp. S-8-2[J]. The Science of the Total Environment,2023,858(Pt 3):159955.

相似文献/References:

[1]李聪,杨爱江,陈蔚洁,等.锑胁迫对鱼腥草抗氧化能力及渗透调节物质的影响[J].江苏农业科学,2019,47(13):175.
 Li Cong,et al.Effects of antimony stress on antioxidant capacity and osmotic regulation of Houttuynia cordata Thunb[J].Jiangsu Agricultural Sciences,2019,47(1):175.

备注/Memo

备注/Memo:
收稿日期:2023-12-02
基金项目:湖南省自然科学基金-区域联合基金(编号:2023JJ50086);湖南省自然资源厅科技计划(编号:20230105DZ);湖南省教育厅科学研究重点项目(编号:22A0608);全国大学生创新创业项目(编号:S202310553001)。
作者简介:刘灿(1999—),女,湖南益阳人,硕士研究生,研究方向为生态修复。 E-mail:liucan111002@163.com。
通信作者:郑玉,博士,讲师,主要从事生态修复研究。E-mail:zhengyu7175@163.com。
更新日期/Last Update: 2025-01-05