|本期目录/Table of Contents|

[1]黄南巡,冯乃杰,郑殿峰,等.外源亚精胺对NaCl胁迫下油菜生理特性的影响[J].江苏农业科学,2025,53(2):136-144.
 Huang Nanxun,et al.Effect of exogenous spermidine on physiological characteristics of rapeseed under NaCl stress[J].Jiangsu Agricultural Sciences,2025,53(2):136-144.
点击复制

外源亚精胺对NaCl胁迫下油菜生理特性的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第53卷
期数:
2025年第2期
页码:
136-144
栏目:
遗传育种与耕作栽培
出版日期:
2025-01-20

文章信息/Info

Title:
Effect of exogenous spermidine on physiological characteristics of rapeseed under NaCl stress
作者:
黄南巡冯乃杰郑殿峰陈静沈雪峰
广东海洋大学,广东湛江 524088
Author(s):
Huang Nanxunet al
关键词:
甘蓝型油菜亚精胺NaCl胁迫内源激素抗氧化酶
Keywords:
-
分类号:
S634.301
DOI:
-
文献标志码:
A
摘要:
为了明确外源亚精胺对盐胁迫下油菜生长及生理特性的影响,以盐敏感型品种(中双11)和耐盐型品种(华油杂158R)为材料,设置4个处理[0 mmol/L 氯化钠溶液+0 mmol/L亚精胺(CK)为空白对照,单独喷施0.25 mmol/L亚精胺(S),单独施用120 mmol/L 氯化钠溶液(N),喷施120 mmol/L氯化钠溶液+0.25 mmol/L亚精胺(N+S)],研究叶喷亚精胺对盐胁迫下油菜生长、生理特性的影响。结果表明,在NaCl胁迫下,叶喷0.25 mmol/L亚精胺有效缓解了油菜幼苗的生长,显著增加了油菜幼苗的株高、根长、叶面积和生物量,增加了油菜叶片的叶绿素含量、抗氧化酶(超氧化物歧化酶、过氧化氢酶)活性和水杨酸含量。其中亚精胺主要通过提升盐敏感型品种中双11的超氧化物歧化酶、过氧化氢酶活性,增加叶绿素、可溶性蛋白和水杨酸含量,降低细胞分裂素含量,耐盐型品种华油杂158R则通过增加可溶性蛋白含量、降低脯氨酸和脱落酸含量来缓解盐胁迫带来的伤害,促进油菜幼苗生长。综上,叶面喷施亚精胺可以缓解盐胁迫下油菜的生长抑制,提升抗氧化酶活性和内源激素含量,不同耐盐品种对亚精胺的生理响应存在差异。
Abstract:
-

参考文献/References:

[1]毛恋,芦建国,江海燕. 植物响应盐碱胁迫的机制[J]. 分子植物育种,2020,18(10):3441-3448.
[2]郑青松,刘海燕,隆小华,等. 盐胁迫对油菜幼苗离子吸收和分配的影响[J]. 中国油料作物学报,2010,32(1):65-70.
[3]Nandy S,Das T,Tudu C K,et al. Unravelling the multi-faceted regulatory role of polyamines in plant biotechnology,transgenics and secondary metabolomics[J]. Applied Microbiology and Biotechnology,2022,106(3):905-929.
[4]Lechowska K,Wojtyla ,Quinet M,et al. Endogenous polyamines and ethylene biosynthesis in relation to germination of osmoprimed Brassica napus seeds under salt stress[J]. International Journal of Molecular Sciences,2021,23(1):349.
[5]Jankovska-Bortkevicˇ E,Gaveliene· V,veikauskas V,et al. Foliar application of polyamines modulates winter oilseed rape responses to increasing cold[J]. Plants,2020,9(2):179.
[6]魏晓凯,景延秋,何佶弦,等. 外源亚精胺对烤烟幼苗干旱胁迫的缓解效应研究[J]. 作物杂志,2022(3):143-148.
[7]卫丹丹,王丙全,赵丽娟,等. 亚精胺对盐胁迫下藜麦种子萌发和呼吸速率的影响[J]. 种子,2022,41(12):7-13.
[8]巴·爱荣,刘静,石硕,等. 外源Spd对渗透/盐胁迫下草莓生理生化的影响[J]. 北京农学院学报,2022,37(4):26-31.
[9]ElSayed A I,Mohamed A H,Rafudeen M S,et al. Polyamines mitigate the destructive impacts of salinity stress by enhancing photosynthetic capacity,antioxidant defense system and upregulation of Calvin cycle-related genes in rapeseed (Brassica napus L.)[J]. Saudi Journal of Biological Sciences,2022,29(5):3675-3686.
[10]吴家怡,孟丽姣,袁芳,等. 铝胁迫下油菜幼苗叶绿素质量分数与光化学效率及碳同化代谢的研究[J]. 西南大学学报(自然科学版),2023,45(5):33-47.
[11]黄松,吴月娜,刘梅,等. 茚三酮比色法测定青天葵中总游离氨基酸的含量[J]. 中国中医药信息杂志,2010,17(12):50-52.
[12]曲春香,沈颂东,王雪峰,等. 用考马斯亮蓝测定植物粗提液中可溶性蛋白质含量方法的研究[J]. 苏州大学学报(自然科学版),2006,22(2):82-85.
[13]张恒. 星星草(Puccinellia tenuiflora)叶绿体Na2CO3胁迫应答的生理学与定量蛋白质组学研究[D]. 哈尔滨:东北林业大学,2012.
[14]Choudhary D K. Plant growth-promotion (PGP) activities and molecular characterization of rhizobacterial strains isolated from soybean (Glycine max L.Merril) plants against charcoal rot pathogen,Macrophomina phaseolina[J]. Biotechnology Letters,2011,33(11):2287-2295.
[15]Li Y,Zhou C X,Yan X J,et al. Simultaneous analysis of ten phytohormones in Sargassum horneri by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry[J]. Journal of Separation Science,2016,39(10):1804-1813.
[16]Cai B D,Zhu J X,Gao Q,et al. Rapid and high-throughput determination of endogenous cytokinins in Oryza sativa by bare Fe3O4 nanoparticles-based magnetic solid-phase extraction[J]. Journal of Chromatography.A,2014,1340:146-150.
[17]Niu Q F,Zong Y,Qian M J,et al. Simultaneous quantitative determination of major plant hormones in pear flowers and fruit by UPLC/ESI-MS/MS[J]. Analytical Methods,2014,6(6):1766-1773.
[18]Xiao H M,Cai W J,Ye T T,et al. Spatio-temporal profiling of abscisic acid,indoleacetic acid and jasmonic acid in single rice seed during seed germination[J]. Analytica Chimica Acta,2018,1031:119-127.
[19]Pan X Q,Welti R,Wang X M. Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry[J]. Nature Protocols,2010,5:986-992.
[20]imura J,Antoniadi I,iroká J,et al. Plant hormonomics:multiple phytohormone profiling by targeted metabolomics[J]. Plant Physiology,2018,177(2):476-489.
[21]万何平,戴希刚,陈敬东,等. 甘蓝型油菜对盐胁迫的响应及耐盐相关性状QTL研究进展[J]. 中国油料作物学报,2020,42(4):536-544.
[22]丁娟. 甘蓝型油菜苗期耐盐生理及相关基因的QTL定位[D]. 杨凌:西北农林科技大学,2015.
[23]李娜,陈红,裴孝伯. 外源亚精胺对盐胁迫下黄瓜幼苗耐盐性的影响[J]. 热带作物学报,2013,34(7):1359-1364.
[24]徐宏佳,孙锦,鲁娜,等. 叶面喷施亚精胺对根部高温胁迫下生菜生长及光合特性的影响[J]. 上海农业学报,2017,33(3):48-53.
[25]朱兰,耿贵,於丽华. 外源亚精胺对盐胁迫下甜菜生长及养分吸收的影响[J]. 中国糖料,2020,42(2):27-32.
[26]张腾国,胡馨丹,李萍,等. 盐及低温胁迫对油菜ROS和抗氧化酶活性的影响[J]. 兰州大学学报(自然科学版),2019,55(4):497-505.
[27]Gupta B,Huang B R. Mechanism of salinity tolerance in plants:physiological,biochemical,and molecular characterization[J]. International Journal of Genomics,2014,2014:701596.
[28]Fang W M,Qi F,Yin Y Q,et al. Exogenous spermidine promotes γ-aminobutyric acid accumulation and alleviates the negative effect of NaCl stress in germinating soybean (Glycine max L.)[J]. Foods,2020,9(3):267.
[29]海霞,米俊珍,赵宝平,等. 外源亚精胺对盐胁迫下燕麦幼苗生长及生理特性的影响[J]. 西北植物学报,2021,41(6):1003-1011.
[30]侯君杰. 外源亚精胺缓解盐胁迫对水稻光合性能影响的机理研究[D]. 南京:南京师范大学,2021.
[31]孙凤岭,陈昆,姜涛,等. 盐胁迫对西瓜幼苗光合色素、光合特性及抗氧化保护酶系统的影响[J]. 园艺与种苗,2022,42(12):4-6.
[32]Yu Q L,Sun W J,Han Y Y,et al. Exogenous spermidine improves the sucrose metabolism of lettuce to resist high-temperature stress[J]. Plant Growth Regulation,2022,96(3):497-509.
[33]吴旭红,冯晶旻. 外源亚精胺对渗透胁迫下南瓜幼苗抗氧化酶活性等生理特性的影响[J]. 干旱地区农业研究,2017,35(4):255-262.
[34]Abid G,Ouertani R N,Ghouili E,et al. Exogenous application of spermidine mitigates the adverse effects of drought stress in faba bean (Vicia faba L.)[J]. Functional Plant Biology,2022,49(4):405-420.
[35]汤华,柳晓磊. 盐胁迫下玉米苗期农艺性状和脯氨酸含量变化的研究[J]. 中国农学通报,2007,23(3):244-249.
[36]舒健虹,王子苑,曾庆飞,等. 基于转录组测序分析阿氏芽孢杆菌R60对玉米抗旱性的影响[J]. 南方农业学报,2023,54(8):2340-2351.
[37]Hyoung S,Cho S H,Chung J H,et al. Cytokinin oxidase PpCKX1 plays regulatory roles in development and enhances dehydration and salt tolerance in Physcomitrella patens[J]. Plant Cell Reports,2020,39(3):419-430.
[38]朱波,徐绮雯,马淑敏,等. 干旱缺钾对油菜内源激素、光合作用和叶绿素荧光特性的影响[J]. 中国油料作物学报,2022,44(3):570-580.
[39]Nishiyama R,Watanabe Y,Fujita Y,et al. Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought,salt and abscisic acid responses,and abscisic acid biosynthesis[J]. The Plant Cell,2011,23(6):2169-2183.
[40]Yu Z P,Duan X B,Luo L,et al. How plant hormones mediate salt stress responses[J]. Trends in Plant Science,2020,25(11):1117-1130.
[41]马广民. 水杨酸对盐胁迫下苦瓜种子萌发及幼苗生长的影响[J]. 中国瓜菜,2024,37(2):100-105.
[42]Srinivasan T,Kumar K R R,Meur G,et al. Heterologous expression of Arabidopsis NPR1 (AtNPR1) enhances oxidative stress tolerance in transgenic tobacco plants[J]. Biotechnology Letters,2009,31(9):1343-1351.
[43]Ahanger M A,Aziz U,Alsahli A A,et al. Influence of exogenous salicylic acid and nitric oxide on growth,photosynthesis,and ascorbate-glutathione cycle in salt stressed Vigna angularis[J]. Biomolecules,2019,10(1):42.

相似文献/References:

[1]彭琦,张洁夫,张维,等.甘蓝型油菜裂角性快速鉴定的方法及其应用[J].江苏农业科学,2014,42(11):128.
 Peng Qi,et al(8).Rapid identification method of crack angle of Brassica napus and its application[J].Jiangsu Agricultural Sciences,2014,42(2):128.
[2]徐亮.青海不同海拔环境对甘蓝型油菜种子油脂和干物质积累的影响[J].江苏农业科学,2015,43(12):95.
 Xu Liang.Effects of altitude environment on oil and dry matter accumulation in Brassica napus seeds in Qinghai Province[J].Jiangsu Agricultural Sciences,2015,43(2):95.
[3]谢雅晶,武爱华,刘贤金.青杂5号甘蓝型油菜的高效再生及农杆菌侵染转化体系的建立[J].江苏农业科学,2015,43(12):17.
 Xie Yajing,et al.High efficiency regeneration and agrobacterium-mediated transformation system of Brassica napus L. “Qinza No.5” with insect resistant gene[J].Jiangsu Agricultural Sciences,2015,43(2):17.
[4]李爱民,张永泰,惠飞虎,等.杂交油菜新品种扬优10号的选育[J].江苏农业科学,2013,41(07):88.
 Li Aimin,et al.Breeding of new hybrid rapeseed cultivar “Yangyou No.10”[J].Jiangsu Agricultural Sciences,2013,41(2):88.
[5]李晓慧,张恩让,何玉安,等.亚高温及外源物质调节下番茄的生理响应[J].江苏农业科学,2013,41(07):135.
 Li Xiaohui,et al.Physiological response of tomato under the regulation of sub-high temperature and exogenous substances[J].Jiangsu Agricultural Sciences,2013,41(2):135.
[6]杨立飞,魏国平,朱月林.外源亚精胺对NaCl胁迫下菜用大豆多胺合成及膜脂过氧化的影响[J].江苏农业科学,2014,42(01):114.
 Yang Lifei,et al.Effects of exogenous spermidine on synthesis of polyamines (PAs) and peroxidation of membrane lipid in vegetable soybean under NaCl stress[J].Jiangsu Agricultural Sciences,2014,42(2):114.
[7]李爱民,周德银,惠飞虎,等.大籽粒优质甘蓝型油菜新品种扬油9号的选育[J].江苏农业科学,2014,42(02):78.
 Li Aimin,et al.Breeding of new Brassica napus cultivar“Yangyou No.9” with big grains and high quality[J].Jiangsu Agricultural Sciences,2014,42(2):78.
[8]淡亚彬,杜德志.甘蓝型油菜心叶颜色性状的遗传和AFLP标记的筛选[J].江苏农业科学,2016,44(04):90.
 Dan Yabin,et al.Inheritance of central leaf color trait in Brassica napus and screening of AFLP markers for that trait[J].Jiangsu Agricultural Sciences,2016,44(2):90.
[9]付三雄,戚存扣,张洁夫,等.高产、高油甘蓝型油菜宁油22的选育与栽培要点[J].江苏农业科学,2016,44(02):111.
 Fu Sanxiong,et al.Breeding and cultivation techniques of Brassica napus “Ningyou 22” with high yield and high oil content[J].Jiangsu Agricultural Sciences,2016,44(2):111.
[10]张维,张洁夫,浦惠明,等.神舟十号搭载甘蓝型油菜种子SP1代性状调查[J].江苏农业科学,2015,43(09):130.
 Zhang Wei,et al.Trait investigation of SP1 generation of Brassica napus seed equipped in Shenzhou Ten[J].Jiangsu Agricultural Sciences,2015,43(2):130.

备注/Memo

备注/Memo:
收稿日期:2024-01-21
基金项目:湛江市科技计划(编号:2022A01044)。
作者简介:黄南巡(1998—),女,安徽合肥人,硕士研究生,研究方向为热带滨海作物。E-mail:nx121261020@163.com。
通信作者:沈雪峰,博士,教授,硕士生导师,主要从事作物栽培与逆境生理方面的研究。E-mail:shenxuefeng@gdou.edu.cn。
更新日期/Last Update: 2025-01-20