|本期目录/Table of Contents|

[1]滕尧,杨加文,何选泽,等.贵州海桐叶绿体基因组特征及系统发育分析[J].江苏农业科学,2025,53(3):35-44.
 Teng Yao,et al.Characteristics and phylogenetic analysis of chloroplast genome in Pittosporum kweichowense[J].Jiangsu Agricultural Sciences,2025,53(3):35-44.
点击复制

贵州海桐叶绿体基因组特征及系统发育分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第53卷
期数:
2025年第3期
页码:
35-44
栏目:
生物技术
出版日期:
2025-02-05

文章信息/Info

Title:
Characteristics and phylogenetic analysis of chloroplast genome in Pittosporum kweichowense
作者:
滕尧1 杨加文2 何选泽2 张小英2 李嘉昱2 陈彩霞2 袁茂琴2 彭熙1
1.贵州科学院贵州省山地资源研究所,贵州贵阳 550001; 2.贵州科学院贵州省植物园,贵州贵阳 550004
Author(s):
Teng Yaoet al
关键词:
贵州海桐叶绿体基因组结构特征密码子偏好性系统发育分析
Keywords:
-
分类号:
S718.46
DOI:
-
文献标志码:
A
摘要:
为了解贵州海桐(Pittosporum kweichowense)叶绿体基因组基本特征及系统发育关系,本研究基于Illumina高通量测序技术,采用生物信息学方法对序列进行组装,获得贵州海桐完整叶绿体基因组,并对其功能特征、密码子偏好性、简单重复序列、基因组比对信息及系统发育关系等进行分析。结果表明,(1)贵州海桐叶绿体基因组呈典型的四分体结构,总长度为153 582 bp,其中大单拷贝区(LSC)为84 944 bp,小单拷贝区(SSC)为18 740 bp,此外还有2个长度为24 949 bp的反向重复序列区(IR),总GC含量为38.94%。(2)注释到130个基因,其中包括85个蛋白质编码基因、37个tRNA基因和8个rRNA基因。(3)共检测到25 910个密码子,其中编码亮氨酸(Leu)的密码子数量最多,密码子第3位碱基有较高的A/U偏好性。(4)通过微卫星分析鉴定到44个简单重复序列(SSR)位点,且明显偏好使用A/T碱基。(5)海桐花属植物的叶绿体基因组IR/SC边界相对保守,变异主要存在于LSC。(6)系统发育分析结果显示,贵州海桐、昆明海桐(P. kunmingense)的亲缘关系最近。
Abstract:
-

参考文献/References:

[1]中国科学院中国植物志编辑委员会. 中国植物志:第二十七卷[M]. 北京:科学出版社,1979:1979-1980.
[2]樊钰虎,刘江,王泽秀. 海桐花属植物化学成分及药理活性研究进展[J]. 中草药,2013,9(42): 1842-1851.
[3]国家中医药管理局《中华本草》编委会. 中华本草[M]. 上海:上海科学技术出版社,1999:2522-2523.
[4]吴虢东,钱中清,戴军,等. 短萼海桐抗结核实验研究[J]. 中国防痨杂志,2007,29(1):41-43.
[5]Madikizela B,McGaw L J. Pittosporum viridiflorum Sims (Pittosporaceae):a review on a useful medicinal plant native to South Africa and tropical Africa[J]. Journal of Ethnopharmacology,2017,205:217-230.
[6]Thodi R C,Ibrahim J M,Surendran V A,et al. Rutaretin1′-(6″-sinapoylglucoside):promising inhibitor of COVID 19 mpro catalytic dyad from the leaves of Pittosporum dasycaulon Miq (Pittosporaceae)[J]. Journal of Biomolecular Structure & Dynamics,2022,40(23):12557-12573.
[7]夏建开. 尖萼海桐次生代谢产物及其生物活性研究[D]. 杨凌:西北农林科技大学,2022:2-13.
[8]Hu Y Y,Sun Y Q,Zhu Q H,et al. Poaceae chloroplast genome sequencing:great leap forward in recent ten years[J]. Current Genomics,2023,23(6):369-384.
[9]王玲,董文攀,周世良. 被子植物叶绿体基因组的结构变异研究进展[J]. 西北植物学报,2012,32(6):1282-1288.
[10]龚意辉,谢雪阳,魏媛媛,等. 金冠8-18油桃叶绿体全基因组序列特征及其系统发育[J]. 江苏农业科学,2023,51(19):30-36.
[11]Daniell H,Lin C S,Yu M,et al. Chloroplast genomes:diversity,evolution,and applications in genetic engineering[J]. Genome Biology,2016,17(1):134.
[12]宋芸,贾孟君,曹亚萍,等. 连翘叶绿体基因组特征分析[J]. 园艺学报,2022,49(1):187-199.
[13]Wang Y,Zhao C,Li Y Q. The complete chloroplast genome sequence of Pittosporum kerrii:the first Pittosporaceae plastome[J]. Mitochondrial DNA Part B(Resources),2019,4(2):3959-3960.
[14]Xiao M K,Xiong X K,Shen S B,et al. The complete chloroplast genome of Pittosporum brevicalyx[J]. Mitochondrial DNA Part B(Resources),2021,6(7):1919-1920.
[15]Zhang S D,Ling L Z,Zhang Q H. Comparative and phylogenetic analysis of the complete chloroplast genomes of ten Pittosporum species from East Asia[J]. Functional & Integrative Genomics,2024,24(2):64.
[16]陈昆松,李方,徐昌杰,等. 改良CTAB法用于多年生植物组织基因组DNA的大量提取[J]. 遗传,2004,26(4):529-531.
[17]Katoh K,Standley D M. MAFFT multiple sequence alignment software version 7:improvements in performance and usability[J]. Molecular Biology and Evolution,2013,30(4):772-780.
[18]Jin J J,Yu W B,Yang J B,et al. GetOrganelle:a fast and versatile toolkit for accurate de novo assembly of organelle genomes[J]. Genome Biology,2020,21(1):241.
[19]Shi L C,Chen H M,Jiang M,et al. CPGAVAS2,an integrated plastome sequence annotator and analyzer[J]. Nucleic Acids Research,2019,47(W1):W65-W73.
[20]Zheng S Y,Poczai P,Hyvnen J,et al. Chloroplot:an online program for the versatile plotting of organelle genomes[J]. Frontiers in Genetics,2020,11:576124.
[21]王子豪,郭佳乐,范琪,等. 红边龙血树叶绿体基因组特征及其系统发育分析[J]. 生物工程学报,2023,39(7):2926-2938.
[22]Habibi N,Uddin S,Behebehani M,et al. Data on SSR markers and SNPs filtered from transcriptome of Parvocalanus crassirostris[J]. Data in Brief,2023,50:109449.
[23]Amiryousefi A,Hyvnen J,Poczai P. IRscope:an online program to visualize the junction sites of chloroplast genomes[J]. Bioinformatics,2018,34(17):3030-3031.
[24]张浩蓉,秃玉翔,李启少,等. 桑属植物叶绿体基因组特征比较及系统发育分析[J]. 江苏农业科学,2024,52(7):34-40.
[25]Hhler D,Pfeiffer W,Ioannidis V,et al. RAxML Grove:an empirical phylogenetic tree database[J]. Bioinformatics,2022,38(6):1741-1742.
[26]Maheswari P,Kunhikannan C,Yasodha R. Chloroplast genome analysis of angiosperms and phylogenetic relationships among Lamiaceae members with particular reference to teak (Tectona grandis L.f)[J]. Journal of Biosciences,2021,46:43.
[27]Mann S,Chen Y P P. Bacterial genomic G+C composition-eliciting environmental adaptation[J]. Genomics,2010,95(1):7-15.
[28]Meier-Kolthoff J P,Klenk H P,Gker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age[J]. International Journal of Systematic and Evolutionary Microbiology,2014,64(Pt2):352-356.
[29]高娜娜,赵志礼,倪梁红. 植物叶绿体ycf15基因应用于药用植物鉴定的前景展望[J]. 中草药,2017,48(15):3210-3217.
[30]Parvathy S T,Udayasuriyan V,Bhadana V. Codon usage bias[J]. Molecular Biology Reports,2022,49(1):539-565.
[31]龚意辉,唐诗眙,周桂花,等. 黄荆坪竹根椒叶绿体基因组密码子使用偏好性及影响因素分析[J]. 江苏农业科学,2023,51(20):28-34.
[32]Kumar M,Choi J Y,Kumari N,et al. Molecular breeding in Brassica for salt tolerance:importance of microsatellite (SSR) markers for molecular breeding in Brassica[J]. Frontiers in Plant Science,2015,6:688.
[33]Taheri S,Abdullah T L,Yusop M R,et al. Mining and development of novel SSR markers using next generation sequencing (NGS) data in plants[J]. Molecules,2018,23(2):399.
[34]赵鹏宇,赵威,侯智扬,等. 黄背草与2种菅属植物叶绿体基因组特征比较及系统发育分析[J]. 中草药,2023,54(10):3261-3272.
[35]马录花,宁佳奇,王永杰,等. 桃儿七叶绿体比较基因组学分析[J]. 生物工程学报,2022,38(10):3695-3712.
[36]Danecek P,Auton A,Abecasis G,et al. The variant call format and VCFtools[J]. Bioinformatics,2011,27(15):2156-2158.
[37]Yang T G,Wu Z H,Tie J,et al. A comprehensive analysis of chloroplast genome provides new insights into the evolution of the genus Chrysosplenium[J]. International Journal of Molecular Sciences,2023,24(19):14735.
[38]Kapli P,Yang Z H,Telford M J. Phylogenetic tree building in the genomic age[J]. Nature Reviews Genetics,2020,21(7):428-444.

相似文献/References:

[1]柳燕杰,田旭平,李倩.美国红梣叶绿体基因组密码子偏好性分析[J].江苏农业科学,2020,48(15):83.
 Liu Yanjie,et al.Analysis of codon bias in chloroplast genome of Fraxinus pennsylvanica[J].Jiangsu Agricultural Sciences,2020,48(3):83.
[2]夏涵涵,雷雪柔,黄臻齐,等.二代测序技术和叶绿体基因组在菊花系统学分类和遗传资源研究中的应用综述[J].江苏农业科学,2021,49(13):25.
 Xia Hanhan,et al.Application of second generation sequencing and chloroplast genome in taxonomy and genetic resources research of Chrysanthemum morifolium:a review[J].Jiangsu Agricultural Sciences,2021,49(3):25.
[3]丁祥青,毕远洋,陈佳婷,等.抱茎金花茶(Camellia tienii)的叶绿体基因组特征分析[J].江苏农业科学,2022,50(23):33.
 Ding Xiangqing,et al.Analysis of chloroplast genome characteristics of Camellia tienii[J].Jiangsu Agricultural Sciences,2022,50(3):33.
[4]万露露,范敦锦,王中煊,等.杜鹃叶绿体基因组特征及密码子偏好性分析[J].江苏农业科学,2023,51(13):54.
 Wan Lulu,et al.Analysis of chloroplast genome characteristics and codon usage bias of Rhododendron simsii[J].Jiangsu Agricultural Sciences,2023,51(3):54.
[5]余涛,蒲芬,管芹,等.南欧大戟叶绿体基因组密码子偏好性分析[J].江苏农业科学,2023,51(15):35.
 Yu Tao,et al.Analysis of codon bias in chloroplast genome of Euphorbia peplus L.[J].Jiangsu Agricultural Sciences,2023,51(3):35.
[6]程培蕾,严陶韬,高静瑶,等.古老月季叶绿体基因组密码子分析[J].江苏农业科学,2023,51(17):34.
 Cheng Peilei,et al.Analysis of codon for chloroplast genome of old Chinese rose[JY。]Cheng Peilei,et al(33)[J].Jiangsu Agricultural Sciences,2023,51(3):34.
[7]龚意辉,唐诗眙,周桂花,等.黄荆坪竹根椒叶绿体基因组密码子使用偏好性及影响因素分析[J].江苏农业科学,2023,51(20):28.
 Gong Yihui,et al.Codon usage bias of Capsicum annuum L. cv. Huangjingping chloroplast genome and its influence factors[J].Jiangsu Agricultural Sciences,2023,51(3):28.
[8]龚意辉,谢雪阳,魏媛媛,等.金冠8-18油桃叶绿体全基因组序列特征及其系统发育[J].江苏农业科学,2023,51(19):30.
 Gong Yihui,et al.Characterization and phylogenetic analysis of complete chloroplast genome of Prunus persica var. nectarinacultivar Jinguan 8-18[J].Jiangsu Agricultural Sciences,2023,51(3):30.
[9]秦斗文,徐庭亮,闫京艳,等.柔毛郁金香叶绿体基因组密码子偏好性分析[J].江苏农业科学,2023,51(22):41.
 Qin Douwen,et al.Analysis of codon usage bias of chloroplast genome in Tulipa buhseana[J].Jiangsu Agricultural Sciences,2023,51(3):41.
[10]龚明贵,白娜,李影,等.硬头黄竹叶绿体基因组密码子偏好性分析[J].江苏农业科学,2024,52(3):67.
 Gong Minggui,et al.Analysis of codon bias in chloroplast genome of Bambusa rigida[J].Jiangsu Agricultural Sciences,2024,52(3):67.

备注/Memo

备注/Memo:
收稿日期:2024-08-28
基金项目:贵州省科技计划(编号:黔科合基础-ZK[2024]一般625);贵州省林业科研项目(编号:黔林科合[2022]01号)。
作者简介:滕尧(1991—),男,贵州罗甸人,硕士,助理研究员,主要研究方向为植物资源栽培利用。E-mail:574177089@qq.com。
通信作者:彭熙,硕士,副研究员,主要研究方向为土壤与植物互作。E-mail:pengxi7979@163.com。
更新日期/Last Update: 2025-02-05