[1]Zhou J M,Zhang Y L. Plant immunity:danger perception and signaling[J]. Cell,2020,181(5):978-989.
[2]Mur L A J,Kenton P,Atzorn R,et al. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy,antagonism,and oxidative stress leading to cell death[J]. Plant Physiology,2006,140(1):249-262.
[3]Zheng L J,Yang P,Niu Z J,et al. Dissecting in vivo responses of phytohormones to Alternaria solani infection reveals orchestration of JA-and ABA-mediated antifungal defenses in potato[J]. Horticulture Research,2022,9:uhac188.
[4]Thomas-Sharma S,Abdurahman A,Ali S,et al. Seed degeneration in potato:the need for an integrated seed health strategy to mitigate the problem in developing countries[J]. Plant Pathology,2016,65(1):3-16.
[5]Ha S T T,Kim Y T,Yeam I,et al. Molecular dissection of rose and Botrytis cinerea pathosystems affected by ethylene[J]. Postharvest Biology & Technology,2022,194:112104.
[6]夏婧,饶玉春,曹丹芸,等. 水稻中乙烯生物合成关键酶OsACS和OsACO调控机制研究进展[J]. 植物学报,2024,59(2):291-301.
[7]Fontecave M,Atta M,Mulliez E. S-adenosylmethionine:nothing goes to waste[J]. Trends in Biochemical Sciences,2004,29(5):243-249.
[8]Shen B J,Li C J,Tarczynski M C. High free-methionine and decreased lignin content result from a mutation in the Arabidopsis S-adenosyl-L-methionine synthetase 3 gene[J]. The Plant Journal,2002,29(3):371-380.
[9]Roje S. S-adenosyl-L-methionine:beyond the universal methyl group donor[J]. Phytochemistry,2006,67(15):1686-1698.
[10]Bistulfi G,Diegelman P,Foster B A,et al. Polyamine biosynthesis impacts cellular folate requirements necessary to maintain S-adenosylmethionine and nucleotide pools[J]. The FASEB Journal,2009,23(9):2888-2897.
[11]Corpas F J,del Río L A,Palma J M. Plant peroxisomes at the crossroad of NO and H2O2 metabolism[J]. Journal of Integrative Plant Biology,2019,61(7):803-816.
[12]Agudelo-Romero P,Bortolloti C,Pais M S,et al. Study of polyamines during grape ripening indicate an important role of polyamine catabolism[J]. Plant Physiology and Biochemistry,2013,67:105-119.
[13]Gholizadeh F,Mirzaghaderi G. Genome-wide analysis of the polyamine oxidase gene family in wheat (Triticum aestivum L.) reveals involvement in temperature stress response[J]. PLoS One,2020,15(8):e0236226.
[14]Heidari P,Mazloomi F,Nussbaumer T,et al. Insights into the SAM synthetase gene family and its roles in tomato seedlings under abiotic stresses and hormone treatments[J]. Plants,2020,9(5):586.
[15]才晓溪,沈阳,胡冰霜,等. 过表达野生大豆S-腺苷甲硫氨酸合成酶基因GsSAMS提高水稻耐盐碱性[J]. 核农学报,2022,36(1):50-56.
[16]García M J,Lucena C,Romera F J,et al. Ethylene and nitric oxide involvement in the up-regulation of key genes related to iron acquisition and homeostasis in Arabidopsis[J]. Journal of Experimental Botany,2010,61(14):3885-3899.
[17]Ji D C,Cui X M,Qin G Z,et al. SlFERL interacts with S-adenosylmethionine synthetase to regulate fruit ripening[J]. Plant Physiology,2020,184(4):2168-2181.
[18]Mao D D,Yu F,Li J,et al. FERONIA receptor kinase interacts with S-adenosylmethionine synthetase and suppresses S-adenosylmethionine production and ethylene biosynthesis in Arabidopsis[J]. Plant,Cell & Environment,2015,38(12):2566-2574.
[19]Chen Y,Xu Y Y,Luo W,et al. The F-box protein OsFBK12 targets OsSAMS1 for degradation and affects pleiotropic phenotypes,including leaf senescence,in rice[J]. Plant Physiology,2013,163(4):1673-1685.
[20]Ahmed I M,Nadira U A,Qiu C W,et al. The barley S-adenosylmethionine synthetase 3 gene HvSAMS3 positively regulates the tolerance to combined drought and salinity stress in Tibetan wild barley[J]. Cells,2020,9(6):1530.
[21]Chen Y,Zou T,McCormick S. S-adenosylmethionine synthetase 3 is important for pollen tube growth[J]. Plant Physiology,2016,172(1):244-253.
[22]Lajeunesse G,Roussin-Léveillée C,Boutin S,et al. Light prevents pathogen-induced aqueous microenvironments via potentiation of salicylic acid signaling[J]. Nature Communications,2023,14(1):713.
[23]Seo S,Mitsuhara I,Feng J,et al. Cyanide,a coproduct of plant hormone ethylene biosynthesis,contributes to the resistance of rice to blast fungus (Article)[J]. Plant Physiology,2011,155(1):502-514.
[24]Seong E S,Jeon M R,Choi J H,et al. Overexpression of S-adenosylmethionine synthetase enhances tolerance to cold stress in tobacco[J]. Russian Journal of Plant Physiology,2020,67(2):242-249.
[25]杨德卫,王勋,郑星星,等. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报,2022,48(5):1119-1128.
[26]Ahmadizadeh M,Chen J T,Hasanzadeh S,et al. Insights into the genes involved in the ethylene biosynthesis pathway in Arabidopsis thaliana and Oryza sativa[J]. Journal of Genetic Engineering and Biotechnology,2020,18(1):62.
[27]Hopkins C M,White F F,Choi S H,et al. Identification of a family of avirulence genes from Xanthomonas oryzae pv. oryzae[J]. Molecular Plant-Microbe Interactions,1992,5(6):451-459.
[28]赖叶林,贺莹,李欣欣,等. 一种植物原生质体分离与瞬时转化的方法[J]. 植物生理学报,2020,56(4):895-903.
[29]Musabyimana J P,Distler U,Sassmannshausen J,et al. Plasmodium falciparum S-adenosylmethionine synthetase is essential for parasite survival through a complex interaction network with cytoplasmic and nuclear proteins[J]. Microorganisms,2022,10(7):1419.
[30]Wang C,Zhang J,Li J,et al. Exogenous methyl jasmonate regulates endogenous hormone synthesis of soilless cultivated Chinese chive to promote growth physiology and photosynthesis[J]. Scientia Horticulturae,2024,327:112861.
[31]Shyu C,Brutnell T P. Growth-defence balance in grass biomass production:the role of jasmonates[J]. Journal of Experimental Botany,2015,66(14):4165-4176.
[32]Sauter M,Moffatt B,Saechao M C,et al. Methionine salvage and S-adenosylmethionine:essential links between sulfur,ethylene and polyamine biosynthesis[J]. Biochemical Journal,2013,451(2):145-154.
[33]Zhao S S,Hong W,Wu J G,et al. A viral protein promotes host SAMS1 activity and ethylene production for the benefit of virus infection[J]. eLife,2017,6:e27529.
[34]Zheng H Y,Dong L L,Han X Y,et al. The TuMYB46L-TuACO3 module regulates ethylene biosynthesis in einkorn wheat defense to powdery mildew[J]. The New Phytologist,2020,225(6):2526-2541.
[35]Shen X L,Liu H B,Yuan B,et al. OsEDR1 negatively regulates rice bacterial resistance via activation of ethylene biosynthesis[J]. Plant,Cell & Environment,2011,34(2):179-191.
[36]Yang D L,Li Q,Deng Y W,et al. Altered disease development in the eui mutants and Eui overexpressors indicates that gibberellins negatively regulate rice basal disease resistance[J]. Molecular Plant,2008,1(3):528-537.
[37]Basit A,Farhan M,Mo W D,et al. Enhancement of resistance by poultry manure and plant hormones (salicylic acid & citric acid) against tobacco mosaic virus[J]. Saudi Journal of Biological Sciences,2021,28(6):3526-3533.
[38]Kim C Y,Song H,Lee Y H. Ambivalent response in pathogen defense:a double-edged sword?[J]. Plant Communications,2022,3(6):100415.
[39]Liu S F,Wang Z C,Wu J,et al. The poplar VQ1 gene confers salt tolerance and pathogen resistance in transgenic Arabidopsis plants via changes in hormonal signaling[J]. G3 (Genes Genomes Genetics),2022,12(4):jkac004.
[40]Sánchez-Vallet A,López G,Ramos B,et al. Disruption of abscisic acid signaling constitutively activates Arabidopsis resistance to the necrotrophic fungus Plectosphaerella cucumerina[J]. Plant Physiology,2012,160(4):2109-2124.
[41]Achard P,Vriezen W H,van der Straeten D,et al. Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function[J]. The Plant Cell,2003,15(12):2816-2825.
[42]Achard P,Cheng H,De Grauwe L,et al. Integration of plant responses to environmentally activated phytohormonal signals[J]. Science,2006,311(5757):91-94.
[43]Khan I R M,Fatma M,Per T S,et al. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants[J]. Frontiers in Plant Science,2015,6(6):462.
[44]Dong Z J,Yu Y W,Li S H,et al. Abscisic acid antagonizes ethylene production through the ABI4-mediated transcriptional repression of ACS4 and ACS8 in Arabidopsis [J]. Molecular Plant,2016,9(1):126-135.
[45]Khan S,Alvi A F,Saify S,et al. The ethylene biosynthetic enzymes,1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS) and ACC oxidase (ACO):the less explored players in abiotic stress tolerance[J]. Biomolecules,2024,14(1):90.
[1]马旭俊,刘春娟,吕世博,等.绿色荧光蛋白基因在水稻遗传转化中的应用[J].江苏农业科学,2013,41(04):35.
[2]李岳峰,居立海,张来运,等.水分胁迫下丛枝菌根对水稻/绿豆间作系统
作物生长和氮磷吸收的影响[J].江苏农业科学,2013,41(04):58.
[3]崔月峰,孙国才,王桂艳,等.不同施氮水平和前氮后移措施对水稻产量
及氮素利用率的影响[J].江苏农业科学,2013,41(04):66.
[4]张其蓉,宋发菊,田进山,等.长江中下游稻区水稻区域试验品种抗稻瘟病鉴定与评价[J].江苏农业科学,2013,41(04):92.
[5]王麒,张小明,卞景阳,等.不同插秧密度对黑龙江省第二积温带水稻产量及产量构成的影响[J].江苏农业科学,2013,41(05):60.
Wang Qi,et al.Effect of different transplanting density on yield and yield component of rice in second temperature zone of Heilongjiang Province[J].Jiangsu Agricultural Sciences,2013,41(4):60.
[6]张国良,张森林,丁秀文,等.基质厚度和含水量对水稻育秧的影响[J].江苏农业科学,2013,41(05):62.
Zhang Guoliang,et al.Effects of substrate thickness and water content on growth of rice seedlings[J].Jiangsu Agricultural Sciences,2013,41(4):62.
[7]赵忠宝,朱清海.稻-蟹-鳅生态系统的能值分析[J].江苏农业科学,2013,41(05):349.
Zhao Zhongbao,et al.Emergy analysis of paddy-crab-loach ecosystem[J].Jiangsu Agricultural Sciences,2013,41(4):349.
[8]杨红福,姚克兵,束兆林,等.甲氧基丙烯酸酯类杀菌剂对水稻恶苗病的田间药效[J].江苏农业科学,2014,42(12):166.
Yang Hongfu,et al.Field efficacy of strobilurin fungicides against rice bakanae disease[J].Jiangsu Agricultural Sciences,2014,42(4):166.
[9]唐成,陈露,安敏敏,等.稻瘟病诱导水稻幼苗叶片氧化还原系统的特征谱变化[J].江苏农业科学,2014,42(12):141.
Tang Cheng,et al.Characteristic spectral changes of redox homeostasis system in rice seedling leaves induced by rice blast[J].Jiangsu Agricultural Sciences,2014,42(4):141.
[10]万云龙.优质水稻—春甘蓝轮作高效栽培模式[J].江苏农业科学,2014,42(12):90.
Wan Yunlong.Efficient cultivation mode of high quality rice-spring cabbage rotation[J].Jiangsu Agricultural Sciences,2014,42(4):90.