|本期目录/Table of Contents|

[1]董天亮,李佳,马晓,等.基于SC-ConvNeXt网络模型的小麦叶片病害识别方法[J].江苏农业科学,2025,53(5):129-138.
 Dong Tianliang,et al.A wheat leaf disease recognition method based on SC-ConvNeXt network model[J].Jiangsu Agricultural Sciences,2025,53(5):129-138.
点击复制

基于SC-ConvNeXt网络模型的小麦叶片病害识别方法(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第53卷
期数:
2025年第5期
页码:
129-138
栏目:
病害智能检测
出版日期:
2025-03-05

文章信息/Info

Title:
A wheat leaf disease recognition method based on SC-ConvNeXt network model
作者:
董天亮1李佳1马晓1武青海12
1.吉林化工学院信息与控制工程学院,吉林吉林 132022; 2.吉林农业科技学院电气与信息工程学院,吉林吉林 132101
Author(s):
Dong Tianlianget al
关键词:
图像分类病害识别小麦自监督学习
Keywords:
-
分类号:
S126;TP391.41
DOI:
-
文献标志码:
A
摘要:
当利用卷积神经网络进行小麦病害识别时,在模型训练阶段通常需要用到大量的数据标签,然而数据标记工作既复杂又昂贵,而模型识别效果容易受自然环境下复杂因素的干扰。针对这些问题,提出一种融合SimCLR预训练框架与改进的CBAM注意力机制的小麦病害识别模型SC-ConvNeXt。该模型以ConvNeXt-T为特征提取网络,首先,采用自监督的SimCLR预训练框架学习类间的相似性,减少训练阶段带标签数据的使用;然后,在ConvNeXt-T每个阶段加入CBAM注意力机制,以提高模型在复杂背景下的特征提取能力和泛化能力,并将每个注意力模块中的损失函数改进为LeakyReLu激活函数,从而避免出现输入为负值时神经元失活的情况;最后,通过引入Focal Loss损失函数,改善难易分类样本间数量不平衡问题。使用数据集来自吉林农业科技学院“智慧农业”平台,包含2种小麦病害和健康小麦数据,在多种数据增强方式扩充数据集后,依次验证了添加SimCLR、注意力机制的有效性;同时设置对比试验与4种经典的分类模型进行对比分析。结果表明,本研究提出的SC-ConvNeXt网络模型在测试集的平均分类准确率为91.37%,在所有对比模型中最优,且在训练过程中无需额外使用带标签的数据,证明了小麦病害识别模型在不需要额外带标签数据训练的前提下,有效提升了对自然环境下的小麦病害识别的性能。
Abstract:
-

参考文献/References:

[1]李圣军. 2022—2023年度全球小麦市场回顾及2023/2024年度展望[J]. 中国粮食经济,2023,30(8):65-69.
[2]宗冬琳,王弢. 基于知网数据库分析干旱地区小麦农艺性状与产量的关系[J]. 大麦与谷类科学,2023,40(4):6-10.
[3]周团委. 建国后河北省小麦生产发展历程研究(1949—2013)[D]. 保定:河北农业大学,2015:1-34.
[4]吴海彬,朱志锋,谭城,等. 基于产业链视角的小麦品种品质需求调研分析[J]. 中国种业,2024,43(1):1-8.
[5]Savary S,Ficke A,Aubertot J N,et al. Crop losses due to diseases and their implications for global food production losses and food security[J]. Food Security,2012,4:519-537.
[6]荚恒刚,魏安季. 小麦赤霉病的发生及防治[J]. 现代农业科技,2021,28(17):108-109.
[7]郑秋红,杨霏云,朱玉洁. 小麦白粉病发生气象条件和气象预报研究进展[J]. 中国农业气象,2013,34(3):358-365.
[8]马占鸿. 中国小麦条锈病研究与防控[J]. 植物保护学报,2018,45(1):1-6.
[9]Dhakal A,Shakya S. Image-based plant disease detection with deep learning[J]. International Journal Computer Trends and Technology,2018,61(1):2231-2803.
[10]Gautam A K,Kumar S. Techniques for the detection,identification,and diagnosis of agricultural pathogens and diseases[M]// Egbuna C,Sawicka B .Natural remedies for pest,disease and weed control.Amsterdam:Academic Press,2019:135-142.
[11]Jiang P,Chen Y H,Liu B,et al. Real-time detection of apple leaf diseases using deep learning approach based on improved [JP4]convolutional neural networks[J]. IEEE Access,2019,7:59069-59080.
[12]Zhai Z Y,Martínez J F,Beltran V,et al. Decision support systems for agriculture 4.0:survey and challenges[J]. Computers and Electronics in Agriculture,2020,170:105256.
[13]Wagle S A,Harikrishna R. Comparison of plant leaf classification using modified alexnet and support vector machine[J]. Traitement du Signal,2021,38(1):79-87.
[14]Lecun Y,Bengio Y,Hinton G. Deep learning[J]. Nature,2015,521(1):436-444.
[15]Lv M J,Zhou G X,He M F,et al. Maize leaf disease identification based on feature enhancement and dms-robust alexnet[J]. IEEE access,2020,8:57952-57966.
[16]Li X,Rai L. Apple leaf disease identification and classification using resnet models[C]//2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT),2020:738-742.
[17]Li M,Wang J X,Li H L,et al. Method for identifying crop disease based on CNN and transfer learning[J]. Smart Agriculture,2019,1(3):46.
[18]Lin J W,Chen X Y L,Pan R Y,et al. GrapeNet:a lightweight convolutional neural network model for identification of grape leaf diseases[J]. Agriculture,2022,12(6):17.
[19]Liu Z,Mao H Z,Wu C Y,et al. A convnet for the 2020s[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2022:11976-11986.
[20]He K M,Zhang X Y,Ren S Q,et al. Deep residual learning for image recognition [C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2016:770-778.
[21]Liu Z,Lin Y T,Cao Y,et al. Swin transformer:hierarchical vision transformer using shifted windows [C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV),2021:10012-10022.
[22]Jing L L,Tian Y L. Self-supervised visual feature learning with deep neural networks:a survey[J]. IEEE transactions on pattern analysis and machine intelligence,2020,43(11):4037-4058.
[23]张宸嘉,朱磊,俞璐. 卷积神经网络中的注意力机制综述[J]. 计算机工程与应用,2021,57(20):64-72.
[24]Guo W J,Feng Q,Li X Z,et al. Grape leaf disease detection based on attention mechanisms[J]. International Journal of Agricultural and Biological Engineering,2022,15(5):205–212.
[25]Wang Y Y,Tao J,Gao H T. Corn disease recognition based on attention mechanism network[J]. Axioms,2022,11(9):480.
[26]Zhang M,Su H H,Wen J H. Classification of flower image based on attention mechanism and multi-loss attention network[J]. Computer Communications,2021,179(1):307-317.
[27]Qian Z Z,Mu J,Tian F,et al. Facial expression recognition based on strong attention mechanism and residual network[J]. Multimedia Tools and Applications,2022,81(30):44109-44121.
[28]Woo S,Park J,Lee J Y,et al. CBAM:convolutional block attention module[C]// Ferrari V,Hebert M,Sminchisescu C.Proceeding of the European Conference on Computer Vision(ECCV),2018:3-19.
[29]Xu B,Wang N Y,Chen T Q,et al. Empirical evaluation of rectified activations in convolutional network[J]. ArXiv,2015,27:1-5.
[30]Lin T Y,Goyal P,Girshick R,et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision.2017:2999-3007.

相似文献/References:

[1]徐凯宏,米雅婷,谷志新.基于GA-BP神经网络的温室番茄病害诊断[J].江苏农业科学,2016,44(04):387.
 Xu Kaihong,et al.Diagnosis of tomato disease in greenhouse based on GA-BP network[J].Jiangsu Agricultural Sciences,2016,44(5):387.
[2]张会敏,张云龙,张善文,等.基于区分矩阵的属性约简算法的作物病害识别方法[J].江苏农业科学,2015,43(01):387.
 Zhang Huimin,et al.A crop disease recognition method based on attribute reduction of discernibility matrix[J].Jiangsu Agricultural Sciences,2015,43(5):387.
[3]张云龙,袁浩,张晴晴,等.基于颜色特征和差直方图的苹果叶部病害识别方法[J].江苏农业科学,2017,45(14):171.
 Zhang Yunlong,et al.Apple leaf disease recognition based on color characteristics and differential histogram[J].Jiangsu Agricultural Sciences,2017,45(5):171.
[4]刁智华,刁春迎,魏玉泉,等.机器人系统中小麦病害识别与施药算法研究[J].江苏农业科学,2017,45(17):192.
 Diao Zhihua,et al.Study on wheat disease identification and spraying algorithm in robot system[J].Jiangsu Agricultural Sciences,2017,45(5):192.
[5]刁智华,袁万宾,刁春迎,等.病害特征在作物病害识别中的应用研究综述[J].江苏农业科学,2019,47(05):71.
 Diao Zhihua,et al.Application of disease characteristics in crop disease identification:a review[J].Jiangsu Agricultural Sciences,2019,47(5):71.
[6]林彬彬,邱新法,何永健,等.茶树病害智能诊断识别算法研究[J].江苏农业科学,2019,47(06):85.
 Lin Binbin,et al.Study on intelligent diagnosis and recognition algorithm for tea diseases[J].Jiangsu Agricultural Sciences,2019,47(5):85.
[7]何前,郭峰林,方皓正,等.基于改进LeNet-5模型的玉米病害识别[J].江苏农业科学,2022,50(20):35.
 He Qian,et al.Study on maize disease recognition based on improved LeNet-5 model[J].Jiangsu Agricultural Sciences,2022,50(5):35.
[8]孙长兰,林海峰.一种基于集成学习的苹果叶片病害检测方法[J].江苏农业科学,2022,50(20):41.
 Sun Changlan,et al.An apple tree leaf disease detection method based on ensemble learning[J].Jiangsu Agricultural Sciences,2022,50(5):41.
[9]王慧,李康顺,蔡铁,等.基于约束性多目标优化算法的柑橘黄龙病识别算法[J].江苏农业科学,2023,51(6):159.
 Wang Hui,et al.Citrus Huanglongbing recognition algorithm based on constrained multi-objective optimization algorithm[J].Jiangsu Agricultural Sciences,2023,51(5):159.
[10]余骥远,高尚兵,李洁,等.基于MS-PLNet和高光谱图像的绿豆叶斑病病级分类[J].江苏农业科学,2023,51(6):178.
 Yu Jiyuan,et al.Classification of mung bean leaf spot based on MS-PLNet and hyperspectral images[J].Jiangsu Agricultural Sciences,2023,51(5):178.

备注/Memo

备注/Memo:
收稿日期:2024-02-26
基金项目:吉林省特色高水平学科新兴交叉学科“数字农业”项目(编号:20231103)。
作者简介:董天亮(1999—),男,重庆人,硕士研究生,研究方向为人工智能图像分类。E-mail:15234018784@163.com。
通信作者:武青海,硕士,副教授,研究方向为图形图像处理及农业信息化。E-mail:57922126@qq.com。
更新日期/Last Update: 2025-03-05