[1]李娜,田云龙,张蕾,等. 中国化肥减量增效行动与技术研究[J/OL]. 农业资源与环境学报,(2024-03-11)[2024-06-09].
[2]王权顺,吕蕾,黄德丰,等. 基于改进YOLO v4算法的苹果叶部病害缺陷检测研究[J]. 中国农机化学报,2022,43(11):182-187.
[3]Jiang P,Chen Y H,Liu B,et al. Real-time detection of apple leaf diseases using deep learning approach based on improved convolutional neural networks[J]. IEEE Access,2019,7:59069-59080.
[4]Sun H N,Xu H W,Liu B,et al. MEAN-SSD:a novel real-time detector for apple leaf diseases using improved light-weight convolutional neural networks[J]. Computers and Electronics in Agriculture,2021,189:106379.
[5]刘斌,徐皓玮,李承泽,等. 基于快照集成卷积神经网络的苹果叶部病害程度识别[J]. 农业机械学报,2022,53(6):286-294.
[6]张航,程清,武英洁,等. 一种基于卷积神经网络的小麦病害识别方法[J]. 山东农业科学,2018,50(3):137-141.
[7]贾少鹏,高红菊,杭潇. 基于深度学习的农作物病虫害图像识别技术研究进展[J]. 农业机械学报,2019,50(增刊1):313-317.
[8]Deng F,Pu S L,Chen X H,et al. Hyperspectral image classification with capsule network using limited training samples[J]. Sensors,2018,18(9):3153.
[9]龙阳,肖小玲. 基于多注意力机制的苹果叶部病害检测方法[J]. 江苏农业科学,2023,51(23):178-186.
[10]王金鹏,何萌,甄乾广,等. 基于COF-YOLOv 8n的油茶果静、动态检测计数[J]. 农业机械学报,2024,55(4):193-203.
[11]Zhang X H,Li H L,Sun S H,et al. Classification and identification of apple leaf diseases and insect pests based on improved ResNet-50 model[J]. Horticulturae,2023,9(9):1046.
[12]陈佳慧,王晓虹. 改进YOLO v5的无人机航拍图像密集小目标检测算法[J]. 计算机工程与应用,2024,60(3):100-108.
[13]张艳宁,王鹏,张磊,等. 面向无人移动平台的自主进化学习研究进展与展望[J]. 科学通报,2023,68(35):4821-4843.
[14]Huangfu Z M,Li S Q. Lightweight you only look once v8:an upgraded you only look once v8 algorithm for small object identification in unmanned aerial vehicle images[J]. Applied Sciences,2023,13(22):12369.
[15]Yue X,Qi K,Na X Y,et al. Improved YOLO v8-Seg network for instance segmentation of healthy and diseased tomato plants in the growth stage[J]. Agriculture,2023,13(8):1643.
[16]Qian K,Wang S Q,Zhang S J,et al. SiamPKHT:hyperspectral Siamese tracking based on pyramid shuffle attention and knowledge distillation[J]. Sensors,2023,23(23):9554.
[17]陈军,孙丽丽,孟洪兵,等. 融合瓶颈注意力模块的改进YOLO v7织物疵点检测算法[J]. 棉纺织技术,2024,52(3):53-60.
[18]赵宗扬,康杰虎,吴斌,等. 基于FRL-Net的高鲁棒性多尺度小样本轨道入侵异物检测方法研究[J]. 仪器仪表学报,2024,45(1):239-249.
[19]Sharma S,Kumar V,Rana K P S. Automatic oscillations detection and quantification in process control loops using linear predictive coding[J]. Engineering Science and Technology,an International Journal,2020,23(1):123-143.
[20]刘鑫,马本学,李玉洁,等. 基于改进YOLO v7-ByteTrack的干制哈密大枣缺陷检测与计数系统[J]. 农业工程学报,2024,40(3):303-312.
[21]Xie Y H,Yin B,Han X W,et al. Improved YOLO v7-based steel surface defect detection algorithm[J]. Mathematical Biosciences and Engineering,2024,21(1):346-368.
[22]Iqbal J,Munir M A,Mahmood A,et al. Leveraging orientation for weakly supervised object detection with application to firearm localization[J]. Neurocomputing,2021,440:310-320.
[23]刘毅君,何亚凯,吴晓媚,等. 基于改进Faster R-CNN的马铃薯发芽与表面损伤检测方法[J]. 农业机械学报,2024,55(1):371-378.
[24]舒振宇,秦昊. 基于SKNet注意力机制的飞机类型识别算法[J]. 中南民族大学学报(自然科学版),2024,43(1):69-77.
[25]麻斯亮,许勇. 最小点距离的边界框回归损失函数及其应用[J]. 小型微型计算机系统,2024,45(11):2695-2701.
[26]李云红,张蕾涛,李丽敏,等. 基于CycleGAN-IA方法和 M-ConvNext 网络的苹果叶片病害图像识别[J]. 农业机械学报,2024,55(4):204-212.
[1]龙阳,肖小玲.基于多注意力机制的苹果叶部病害检测方法[J].江苏农业科学,2023,51(23):178.
Long Yang,et al.Apple leaf disease recognition method based on multi-attention mechanism[J].Jiangsu Agricultural Sciences,2023,51(5):178.
[2]李志良,李梦霞,董勇,等.基于改进YOLO v8的轻量化玉米害虫识别方法[J].江苏农业科学,2024,52(14):196.
Li Zhiliang,et al.Lightweight corn pest recognition method based on enhanced YOLO v8[J].Jiangsu Agricultural Sciences,2024,52(5):196.
[3]叶琪,王丽芬,马明涛,等.基于改进YOLO v8的草莓病害检测方法[J].江苏农业科学,2024,52(20):250.
Ye Qi,et al.Strawberry disease detection method based on improved YOLO v8[J].Jiangsu Agricultural Sciences,2024,52(5):250.
[4]李龙,李梦霞,李志良.基于改进YOLO v8的水稻害虫识别方法[J].江苏农业科学,2024,52(20):209.
Li Long,et al.Rice pest identification method based on improved YOLO v8[J].Jiangsu Agricultural Sciences,2024,52(5):209.
[5]张立强,武玲梅,蒋林利,等.基于改进YOLO v8s的葡萄叶片病害检测[J].江苏农业科学,2024,52(21):221.
Zhang Liqiang,et al.Detection of grape leaf disease based on improved YOLO v8s[J].Jiangsu Agricultural Sciences,2024,52(5):221.
[6]鲍宜帆,张一丹,樊彩霞,等.基于深度学习的草莓成熟度检测方法[J].江苏农业科学,2025,53(5):89.
Bao Yifan,et al.Study on strawberry maturity detection method based on deep learning[J].Jiangsu Agricultural Sciences,2025,53(5):89.
[7]沈桂芳,张平.基于改进YOLO v8的温室草莓成熟度智能实时识别[J].江苏农业科学,2025,53(5):62.
Shen Guifang,et al.Intelligent real-time recognition of strawberry maturity in greenhouses based on improved YOLO v8[J].Jiangsu Agricultural Sciences,2025,53(5):62.