[1]Quinet M,Angosto T,Yuste-Lisbona F J,et al. Tomato fruit development and metabolism[J]. Frontiers in Plant Science,2019,10:1554.
[2]Bergougnoux V. The history of tomato:from domestication to biopharming[J]. Biotechnology Advances,2014,32(1):170-189.
[3]翟肇裕,曹益飞,徐焕良,等. 农作物病虫害识别关键技术研究综述[J]. 农业机械学报,2021,52(7):1-18.
[4]Collins E J,Bowyer C,Tsouza A,et al. Tomatoes:an extensive review of the associated health impacts of tomatoes and factors that can affect their cultivation[J]. Biology,2022,11(2):239.
[5]Agarwal M,Singh A,Arjaria S,et al. ToLeD:tomato leaf disease detection using convolution neural network[J]. Procedia Computer Science,2020,167:293-301.
[6]蒋清健,姚勇,付志军,等. 基于改进卷积神经网络算法的番茄叶片病害识别[J]. 江苏农业科学,2022,50(20):29-34.
[7]牛学德,高丙朋,南新元,等. 基于改进DenseNet卷积神经网络的番茄叶片病害检测[J]. 江苏农业学报,2022,38(1):129-134.
[8]Thangaraj R,Anandamurugan S,Pandiyan P,et al. Artificial intelligence in tomato leaf disease detection:a comprehensive review and discussion[J]. Journal of Plant Diseases and Protection,2022,129(3):469-488.
[9]郑超杰,李少波,蒲睿强,等. 基于轻量化卷积神经网络的番茄叶片病害识别[J]. 江苏农业科学,2024,52(11):225-231.
[10]陈智超,汪国强,李飞,等. 基于Bi-LSTM与多尺度神经网络模型的番茄病害识别[J]. 江苏农业科学,2023,51(15):194-203.
[11]马丽,周巧黎,赵丽亚,等. 基于深度学习的番茄叶片病害分类识别研究[J]. 中国农机化学报,2023,44(7):187-193,206.
[12]王志强,于雪莹,杨晓婧,等. 基于WGAN和MCA-MobileNet的番茄叶片病害识别[J]. 农业机械学报,2023,54(5):244-252.
[13]Basavaiah J,Arlene Anthony A. Tomato leaf disease classification using multiple feature extraction techniques[J]. Wireless Personal Communications,2020,115(1):633-651.
[14]Tian X L,Meng X Y,Wu Q F,et al. Identification of tomato leaf diseases based on a deep neuro-fuzzy network[J]. Journal of the Institution of Engineers,2022,103(2):695-706.
[15]张天骐,熊天,吴超,等. 基于压缩激励残差分组扩张卷积和密集线性门控Unet歌声分离方法[J]. 应用科学学报,2023,41(5):815-830.
[16]涂万,于红,张鹏,等. 基于通道非降维与空间协调注意力的改进YOLOv8养殖鱼群检测[J]. 大连海洋大学学报,2023,38(4):717-725.
[17]项小东,翟蔚,黄言态,等. 基于Xception-CEMs神经网络的植物病害识别[J]. 中国农机化学报,2021,42(8):177-186.
[18]李书琴,陈聪,朱彤,等. 基于轻量级残差网络的植物叶片病害识别[J]. 农业机械学报,2022,53(3):243-250.
[19]储鑫,李祥,罗斌,等. 基于改进YOLOv4算法的番茄叶部病害识别方法[J]. 江苏农业学报,2023,39(5):1199-1208.
[20]章广传,李彤,何云,等. 基于迁移模型集成的马铃薯叶片病害识别方法[J]. 江苏农业科学,2023,51(15):216-224.
[21]惠巧娟,孙婕. 基于多尺度特征度量元学习的玉米叶片病害识别模型研究[J]. 江苏农业科学,2023,51(9):199-206.
[22]陈聪,于啸,宫琪. 基于改进残差网络的苹果叶片病害识别研究[J]. 河南农业科学,2023,52(4):152-161.
[1]曹元军,陆小明.自走式谷物联合收割机倾斜输送器设计[J].江苏农业科学,2014,42(12):410.
Cao Yuanjun,et al.Design of incline conveyer of self-propelled combine harvester[J].Jiangsu Agricultural Sciences,2014,42(5):410.
[2]范思宇,陆华忠,丘广俊,等.果园电动履带运输车车架轻量化设计[J].江苏农业科学,2018,46(06):178.
Fan Siyu,et al.Lightweight design of chassis frame for orchard electric tracked vehicle[J].Jiangsu Agricultural Sciences,2018,46(5):178.
[3]胡奔,廖敏,李晓鹏,等.拖拉机前动力输出变速箱壳体轻量化设计[J].江苏农业科学,2019,47(10):239.
Hu Ben,et al.Lightweight design of front power output gearbox housing for tractor[J].Jiangsu Agricultural Sciences,2019,47(5):239.
[4]许文燕.基于轻量化神经网络的葡萄叶部病害检测装置研制[J].江苏农业科学,2023,51(19):181.
Xu Wenyan.Development of grape leaf disease detection device based on lightweight neural network[J].Jiangsu Agricultural Sciences,2023,51(5):181.
[5]吴子炜,夏芳,陆林峰,等.基于改进YOLO v5的水稻主要害虫识别方法[J].江苏农业科学,2023,51(21):218.
Wu Ziwei,et al.An identification method for rice major pests based on improved YOLO v5[J].Jiangsu Agricultural Sciences,2023,51(5):218.
[6]李滨,樊健.基于YOLO v5的水稻害虫分类[J].江苏农业科学,2024,52(2):175.
Li Bin,et al.Classification of rice pests based on YOLO v5[J].Jiangsu Agricultural Sciences,2024,52(5):175.
[7]李大华,仲婷,王笋,等.基于改进ShuffleNet v2的轻量化番茄叶片病害识别[J].江苏农业科学,2024,52(3):220.
Li Dahua,et al.Lightweight disease identification for tomato leaves based on improved ShuffleNet v2[J].Jiangsu Agricultural Sciences,2024,52(5):220.
[8]王娜,陈勇,崔艳荣,等.基于改进轻量化YOLO v5n的番茄叶片病害识别方法[J].江苏农业科学,2024,52(8):192.
Wang Na,et al.Tomato leaf disease identification method based on improved lightweight YOLO v5n[J].Jiangsu Agricultural Sciences,2024,52(5):192.
[9]孔令旺,赵刚.基于空洞卷积下采样单元的轻量化害虫图像识别模型[J].江苏农业科学,2024,52(11):189.
Kong Lingwang,et al.Lightweight pest image recognition model based on cavity convolution subsampling unit[J].Jiangsu Agricultural Sciences,2024,52(5):189.
[10]朱齐齐,陈西曲.基于改进YOLO v5的轻量级果园苹果检测算法[J].江苏农业科学,2024,52(17):200.
Zhu Qiqi,et al.Lightweight orchard apple detection algorithm based on improved YOLO v5[J].Jiangsu Agricultural Sciences,2024,52(5):200.