[1]杨信廷,刘蒙蒙,许建平,等. 自动监测装置用温室粉虱和蓟马成虫图像分割识别算法[J]. 农业工程学报,2018,34(1):164-170.
[2]董松,徐晓辉,宋涛,等. 基于计算机视觉的黄瓜病害识别方法研究[J]. 河北工业大学学报,2021,50(4):38-43,62.
[3]蒋力顺,董志学,胡潇,等. 基于卷积神经网络的黄瓜病害识别研究[J]. 计算技术与自动化,2022,41(2):153-157.
[4]温皓杰,张领先,傅泽田,等. 基于Web的黄瓜病害诊断系统设计[J]. 农业机械学报,2010,41(12):178-182.
[5]沈华峰. 结合八度卷积与注意力机制的Xceptions林业害虫识别方法[J]. 信息技术与信息化,2022(6):46-51.
[6]肖小梅,杨红云,易文龙,等. 改进的Alexnet模型在水稻害虫图像识别中的应用[J]. 科学技术与工程,2021,21(22):9447-9454.
[7]石璐莹,童顺延,吴婷,等. 基于改进YOLO v5注意力模型的农田害虫图像识别[J]. 现代信息科技,2023,7(10):70-73,79.
[8]Farman H,Ahmad J,Jan B,Ahmad T,Khan I,Irshad A,et al. EfficientNet-based robust recognition of peach plant diseases in field images[J]. Computers,Materials & Continua,2022,71(1):2073-2089.
[9]Sandhya Devi R S,Vijay Kumar V R,Sivakumar P. EfficientNet v2 model for plant disease classification and pest recognition[J]. Computer Systems Science and Engineering,2023,45(2):2249-2263.
[10]Singh S P,Pritamdas K,Devi K J,et al. Custom convolutional neural network for detection and classification of rice plant diseases[J]. Procedia Computer Science,2023,218:2026-2040.
[11]王海青,姬长英,顾宝兴,等. 基于机器视觉和支持向量机的温室黄瓜识别[J]. 农业机械学报,2012,43(3):163-167,180.
[12]Harkat A,Benzid R. Premature ventricular contraction (PVC) recognition using DCT-CWT based discriminant and optimized RBF neural network[J]. Journal of Biomimetics,Biomaterials and Biomedical Engineering,2023,60:109-117.
[13]万军杰,祁力钧,卢中奥,等. 基于迁移学习的GoogLeNet果园病虫害识别与分级[J]. 中国农业大学学报,2021,26(11):209-221.
[14]温艳兰,陈友鹏,王克强,等. 基于迁移学习和改进残差网络的复杂背景下害虫图像识别[J]. 江苏农业科学,2023,51(8):171-177.
[15]王云露. 基于深度迁移学习的苹果病害识别方法研究[D]. 泰安:山东农业大学,2023:2-6.
[16]Vakacherla S S,Kantharaju P,Mevada M,et al. Single accelerometer to recognize human activities using neural networks[J]. Journal of Biomechanical Engineering,2023,145(6):061005.
[17]甘雨,郭庆文,王春桃,等. 基于改进EfficientNet模型的作物害虫识别[J]. 农业工程学报,2022,38(1):203-211.
[18]Hu K,Liu Y M,Nie J W,et al. Rice pest identification based on multi-scale double-branch GAN-ResNet[J]. Frontiers in Plant Science,2023,14:1167121.
[1]谢军,江朝晖,李博,等.基于二次迁移模型的小样本茶树病害识别[J].江苏农业科学,2021,49(6):176.
Xie Jun,et al.Image recognition of tea plant disease small samples based on secondary migration model[J].Jiangsu Agricultural Sciences,2021,49(5):176.
[2]雷建云,陈楚,郑禄,等.基于改进残差网络的水稻害虫识别[J].江苏农业科学,2022,50(14):190.
Lei Jianyun,et al.Identification of rice pests based on improved residual network[J].Jiangsu Agricultural Sciences,2022,50(5):190.
[3]戴久竣,马肄恒,吴坚,等.基于改进残差网络的葡萄叶片病害识别[J].江苏农业科学,2023,51(5):208.
Dai Jiujun,et al.Grape leaf disease identification based on improved residual network[J].Jiangsu Agricultural Sciences,2023,51(5):208.
[4]鲍浩,张艳.基于注意力机制与改进残差模块的豆叶病害识别[J].江苏农业科学,2023,51(16):187.
Bao Hao,et al.Bean leaf disease identification based on attention mechanism and improved residual module[J].Jiangsu Agricultural Sciences,2023,51(5):187.
[5]吴刚正,蔡成岗,朱瑞瑜.基于注意力机制和残差网络的苹果叶片病害分类[J].江苏农业科学,2023,51(18):177.
Wu Gangzheng,et al.Apple leaf disease classification based on attention mechanism and residual network[J].Jiangsu Agricultural Sciences,2023,51(5):177.
[6]肖天赐,陈燕红,李永可,等.基于改进通道注意力机制的农作物病害识别模型研究[J].江苏农业科学,2023,51(24):168.
Xiao Tianci,et al.Study on crop disease identification model based on improved channel attention mechanism[J].Jiangsu Agricultural Sciences,2023,51(5):168.