|本期目录/Table of Contents|

[1]贺洪江,刘毅祥,王双友.基于改进YOLO v5s的叶菜病虫害检测算法研究[J].江苏农业科学,2025,53(5):244-250.
 He Hongjiang,et al.Study on foliage vegetable disease and pest detection algorithm based on improved YOLO v5s[J].Jiangsu Agricultural Sciences,2025,53(5):244-250.
点击复制

基于改进YOLO v5s的叶菜病虫害检测算法研究(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第53卷
期数:
2025年第5期
页码:
244-250
栏目:
病虫害智能检测
出版日期:
2025-03-05

文章信息/Info

Title:
Study on foliage vegetable disease and pest detection algorithm based on improved YOLO v5s
作者:
贺洪江1刘毅祥1王双友2
1.河北工程大学信息与电气工程学院,河北邯郸 056000; 2.邯郸学院软件学院,河北邯郸 056005
Author(s):
He Hongjianget al
关键词:
叶菜病虫害YOLO v5sCA注意力机制Slim-neckWIoU损失函数
Keywords:
-
分类号:
S126;TP391.41
DOI:
-
文献标志码:
A
摘要:
叶菜病虫害的早期识别是提高叶菜产量和质量的重要保障,为提高常见叶菜病虫的检测精度,针对实际生产中的复杂环境,以YOLO v5s为基准模型,提出一种改进的FV-YOLO v5s模型。首先,在主干网络中融合CA注意力机制模块与C3特征提取模块,形成了C3CA模块以增强叶菜病虫害的特征提取能力。接着在颈部网络中使用Slim-neck范式设计,高效提取图像中小尺寸目标的特征,增强特征融合的效率。最后用 WIoU损失对原损失函数CIoU进行替换,更快地达到收敛状态并提升模型检测性能。结果表明,新模型的精度、召回率和平均精度均值分别达到了92.2%、91.5%、94.8%。改进后的模型FV-YOLO v5s对比原YOLO v5s模型算法,精度、召回率、平均精度均值分别提高2.7、1.4、1.8百分点,优于现有的识别网络,包括YOLO v7、YOLO v8、Faster R-CNN等模型。FV-YOLO v5s模型适用于现代农业生产环境,有助于快速识别和检测叶菜病虫害,且该研究为智慧农业中的叶菜高品质和高产量提供了依据,从而最大限度地减少经济损失。
Abstract:
-

参考文献/References:

[1]金利容,丛胜波,黄薇,等. 播种后直接覆盖29目防虫网防控叶菜害虫[J]. 中南农业科技,2022,43(5):16-19.
[2]岳崇勤,张寒波,堵一鸣. 3种叶菜播种机适应性研究[J]. 长江蔬菜,2023(13):13-15.
[3]Girshick R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). Washington,DC:IEEE Computer Society,2015:1440-1448.
[4]Ren S Q,He K M,Girshick R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
[5]Liu W,Anguelov D,Erhan D,et al. SSD:single shot MultiBox detector[M]//Lecture notes in computer science. Cham:Springer International Publishing,2016:21-37.
[6]Redmon J,Divvala S,Girshick R,et al. You only look once:unified,real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas,NV,USA:IEEE,2016:779-788.
[7]王云露,吴杰芳,兰鹏,等. 基于改进Faster R-CNN的苹果叶部病害识别方法[J]. 林业工程学报,2022,7(1):153-159.
[8]Li D W,Ahmed F,Wu N L,et al. YOLO-JD:a deep learning network for jute diseases and pests detection from images[J]. Plants,2022,11(7):937.
[9]Wang X W,Liu J,Zhu X N. Early real-time detection algorithm of tomato diseases and pests in the natural environment[J]. Plant Methods,2021,17(1):43.
[10]Soeb M J A,Jubayer M F,Tarin T A,et al. Tea leaf disease detection and identification based on YOLO v7 (YOLO-T)[J]. Scientific Reports,2023,13(1):6078.
[11]黄成龙,柯宇曦,华向东,等. 边缘计算在智慧农业中的应用现状与展望[J]. 农业工程学报,2022,38(16):224-234.
[12]杨坚,钱振,张燕军,等. 采用改进YOLO v4-tiny的复杂环境下番茄实时识别[J]. 农业工程学报,2022,38(9):215-221.
[13]吕志远,张付杰,魏晓明,等. 采用组合增强的YOLOX-ViT协同识别温室内番茄花果[J]. 农业工程学报,2023,39(4):124-134.
[14]周桂红,马帅,梁芳芳. 基于改进YOLO v4模型的全景图像苹果识别[J]. 农业工程学报,2022,38(21):159-168.
[15]Hou Q B,Zhou D Q,Feng J S. Coordinate attention for efficient mobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville,TN,USA:IEEE,2021:13708-13717.
[16]Li H L,Li J,Wei H B,et al. Slim-neck by GSConv:a better design paradigm of detector architectures for autonomous vehicles[EB/OL]. (2022-06-06)[2024-03-01]. https://arXiv.org/abs/2206.02424.
[17]Tong Z,Chen Y,Xu Z,et al. Wise-IoU:Bounding Box Regression loss with dynamic focusing mechanism[EB/OL]. (2023-04-08)[2024-03-10]. https://arxiv.org/abs/2301.10051.

相似文献/References:

[1]龙阳,肖小玲.基于多注意力机制的苹果叶部病害检测方法[J].江苏农业科学,2023,51(23):178.
 Long Yang,et al.Apple leaf disease recognition method based on multi-attention mechanism[J].Jiangsu Agricultural Sciences,2023,51(5):178.
[2]赵方,左官芳,顾思睿,等.基于改进YOLO v5s的温室番茄检测模型轻量化研究[J].江苏农业科学,2024,52(8):200.
 Zhao Fang,et al.Lightweight research of greenhouse tomato detection model based on improved YOLO v5s[J].Jiangsu Agricultural Sciences,2024,52(5):200.
[3]朱齐齐,陈西曲.基于改进YOLO v5的轻量级果园苹果检测算法[J].江苏农业科学,2024,52(17):200.
 Zhu Qiqi,et al.Lightweight orchard apple detection algorithm based on improved YOLO v5[J].Jiangsu Agricultural Sciences,2024,52(5):200.
[4]高泉,刘笠溶,张洁,等.基于ActNN-YOLO v5s-RepFPN的番茄病害识别及系统设计[J].江苏农业科学,2024,52(20):220.
 Gao Quan,et al.Tomato disease identification and system design based on ActNN-YOLO v5s-RepFPN[J].Jiangsu Agricultural Sciences,2024,52(5):220.
[5]史鹏涛,田政伟,李晓泽,等.基于改进YOLO v5s算法的红枣缺陷检测与分拣方法[J].江苏农业科学,2025,53(5):83.
 Shi Pengtao,et al.Defect detection and sorting method of jujube based on improved YOLO v5s algorithm[J].Jiangsu Agricultural Sciences,2025,53(5):83.

备注/Memo

备注/Memo:
收稿日期:2024-03-29
基金项目:河北省高等学校科学技术研究项目(编号:ZC2022095)。
作者简介:贺洪江(1964—),男,河北邯郸人,硕士,教授,研究方向为计算机检测与控制。E-mail:1446877734@qq.com。
通信作者:王双友,博士,副教授,研究方向为计算机视觉。E-mail:wsyhdc@163.com。
更新日期/Last Update: 2025-03-05