|本期目录/Table of Contents|

[1]李红,唐永金,曾峰.高浓度锶、铯胁迫对植物叶绿素荧光特性的影响[J].江苏农业科学,2013,41(09):349-352.
 Li Hong,et al.Effects of high concentrations of strontium and cesium on chlorophyll fluorescence characteristics of plants[J].Jiangsu Agricultural Sciences,2013,41(09):349-352.
点击复制

高浓度锶、铯胁迫对植物叶绿素荧光特性的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第41卷
期数:
2013年09期
页码:
349-352
栏目:
资源与环境
出版日期:
2013-09-25

文章信息/Info

Title:
Effects of high concentrations of strontium and cesium on chlorophyll fluorescence characteristics of plants
作者:
李红1 唐永金12 曾峰1
1.西南科技大学生命科学与工程学院,四川绵阳 621010; 2.西南科技大学核废物与环境安全国防重点学科实验室,四川绵阳 621010
Author(s):
Li Hong et al
关键词:
胁迫植物叶绿素荧光特性
Keywords:
-
分类号:
Q945.11;Q946.116
DOI:
-
文献标志码:
A
摘要:
研究高浓度锶(Sr)或铯(Cs)胁迫对植物叶绿素荧光特性的影响,探索核素影响植物生长的光合机理。在含Sr 500 mg/kg土壤、含Cs 500 mg/kg土壤和对照(CK)的土壤中,种植水花生、菊苣、落葵、黄秋葵和藜,出苗65~70 d 后测定叶绿素荧光参数和快速光合曲线参数。结果表明:(1)Sr、Cs胁迫均降低植物PSⅡ最大光化学效率(Fv/Fm)和快速光曲线初始斜率α,Cs胁迫的降低极显著。Sr主要降低了最大荧光Fm使Fv/Fm降低,Cs主要提高了最低荧光F0使Fv/Fm降低;(2)Sr胁迫使植物叶绿素最大相对电子传递速率ETRmax和半饱和光强Ik下降,Cs胁迫使其增加,但均与CK没有显著差异;(3)Sr胁迫对不同植物的Fv/Fm没有显著影响,但Cs胁迫可极显著地降低菊苣和黄秋葵PSⅡ的最大光化学效率Fv/Fm,Cs胁迫对植物最大光化学效率Fv/Fm的降低作用大于Sr胁迫,菊苣和黄秋葵尤为敏感。
Abstract:
-

参考文献/References:

[1]Shangguan Z P,Shao M,Dyckmans J. Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat[J]. J Plant Physiol,2000,156:46-51.
[2]Li R H,Guo P P,Baum M,et al. Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley[J]. Agricultural Sciences in China,2006,5(10):751-757.
[3]Faraloni C,Cutino I,Petruccelli R,et al. Chlorophyll fluorescence technique as a rapid tool for in vitro screening of olive cultivars (Olea europaea L.) tolerant to drought stress[J]. Environmental and Experimental Botany,2011,73:49-56.
[4]Lai F O,Yeo T Y,Sim E K. Identification of drought-tolerant plants for roadside greening-An evaluation of chlorophyll fluorescence as an indicator to screen for drought tolerance[J]. Urban Forestry & Urban Greening,2011,10:177-184.
[5]Tomas D S,Turner D W. Banana (Musa sp.) leaf gas exchange and chlorophyll fluorescence in respose to soil drought,shading,and lamina folding[J]. Scientia Horticulturae,2001,90:93-108.
[6]李涵茂,胡正华,杨燕萍,等. UV-B辐射增强对大豆叶绿素荧光特性的影响[J]. 环境科学,2009,30(12):3669-3675.
[7]Petkova V,Denev I D,Cholakov D,et al. Field screening for heat tolerant common bean cultivars (Phaseolus vulgaris L.) by measuring of chlorophyll fluorescence induction parameters[J]. Scientia Horticulturae,2007,111:101-106.
[8]Meir S,Ronen R,Lurie S,et al. Assessment of chilling injury during storage:Chlorophyll fluorescence characteristics of chilling-susceptible and triazole-induced chilling tolerant basil leaves[J]. Postharvest Biology and Technology,1997,10:213-220.
[9]Panda D,Sharma S G,Sarkar R K.Chlorophyll fluorescence parameters,CO2 photosynthetic rate and regeneration capacity as a result of complete submergence and subsequent re-emergence in rice (Oryza sativa L.)[J]. Aquatic Botany,2008,88:127-133.
[10]Mielke M S,Almeida Alex-Alan F,Gomes F P,et al. Leaf gas exchange,chlorophyll fluorescence and growth responses of Genipa americana seedlings to soil flooding[J]. Environmental and Experimental Botany,2003,50:221-231.
[11]Siffel P,Braunova Z,Sindelkova E,et al. The effect of simulated acid rain on chlorophyll fluorescence spectra of spruce seedlings (Picea abies L.Karst.)[J]. J Plant Physiol,1996,148:271-275.
[12]Misra A N,Srivastava A,Strasser R J. Utilization of fast chlorophyll fluorescence technique in assessing the salt/ion sensitivity of mung bean and Brassica seedlings[J]. J Plant Physiol,2001,158:1173-1181.
[13]Zribi L,Fatma G,Fatma R,et al. Application of chlorophyll fluorescence for the diagnosis of salt stress in tomato “Solanum lycopersicum (variety Rio Grande)”[J]. Scientia Horticulturae,2009,120:367-372.
[14]Santos C V. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves[J]. Scientia Horticulturae,2004,103:93-99.
[15]Drazkiewicz M,Tukendorf A,Baszynski T. Age-dependent response of maize leaf segments to cadmium treatment:Effect on chlorophyll fluorescence and phytochelatin accumulation[J]. J Plant Physiol,2003,160:247-254.
[16]Rau S,Miersch J,Neumann D,et al. Biochemical responses of the aquatic moss Fontinalis antipyretica to Cd,Cu,Pb and Zn determined by chlorophyll fluorescence and protein levels[J]. Environmental and Experimental Botany,2007,59:299-306.
[17]Maksymiec W,Baszynski T. Chlorophyll fluorescence in primary leaves of excess Cu-treated runner bean plants depends on their growth stages and the duration of Cu-action[J]. J Plant Physiol,1996,149:196-200.
[18]俞慧娜,刘鹏,徐根娣. 大豆生长及叶绿素荧光特性对铝胁迫的反应[J]. 中国油料作物学报,2007,29(3):257-265.
[19]张晓雪,王丹,钟钼芝,等. 鸡冠花(Celosia cristata Linn)对Cs和Sr的胁迫反应及其积累特征[J]. 核农学报,2010,24(3):628-633.
[20]闻方平,王丹,徐长合,等. 苏丹草对133Cs 和88Sr 胁迫响应及吸收积累特征研究[J]. 辐射研究与辐射工艺学报,2009,27(4):212-217.
[21]敖嘉,唐运来,陈梅,等. Sr胁迫对油菜幼苗抗氧化指标影响的研究[J]. 核农学报,2010,24(1):166-170.
[22]Massas I,Skarlou V,Haidouti C. 134Cs uptake by four plant species and Cs-K relations in the soil-plant system as affected by Ca(OH)2 application to an acid soil[J]. Journal of Environmental Radioactivity,2010,101:250-257.
[23]Maxwell K,Johnson G N. Chlorophyll fluorescence-a practical guide[J]. J Exp Bot,2000,51(345):659-668.
[24]张守仁.叶绿素荧光动力学参数的意义及讨论[J]. 植物学通报,1999,16(4):444-448.
[25]Demmig-Adams B,Adams W W. Xanthophyll cycle and light stress in nature:Uniform response to excess direct sunlight among higher plant species[J]. Planta,1996,198:460-470.
[26]Ouzounidou G. The use of photoacoustic spectroscopy in assessing leaf photosynthesis under copper stress:correlation of energy storage to photosystem II fluorescence parameters and redox change of P700[J]. Plant Science,1996,113:229-237.
[27]罗黄颖,高洪波,夏庆平,等. γ-氨基丁酸对盐胁迫下番茄活性氧代谢及叶绿素荧光参数的影响[J]. 中国农业科学,2011,44(4):753-761.
[28]Guidi L,Innocenti E D,Carmassi G,et al. Effects of boron on leaf chlorophyll fluorescence of greenhouse tomato grown with saline water[J]. Environmental and Experimental Botany,2011,73:57-63.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2013-03-16
基金项目:国防基础重点科研项目(编号:B3120110001);四川省生物质资源利用与改性工程技术研究中心开放基金。
作者简介:李红(1991—),女,四川仁寿人,本科生,从事重金属的生物效应与植物修复研究。E-mail:993204914@qq.com。
通信作者:唐永金,教授,研究方向为核污染环境的植物修复。E-mail:tangyongjin@swust.edu.cn。
更新日期/Last Update: 2013-09-25