|本期目录/Table of Contents|

[1]冯丹,邢巧,葛成军,等.木薯渣基炭制备及对热带砖红壤的改良效果[J].江苏农业科学,2017,45(01):234-239.
 Feng Dan,et al.Preparation of cassava dreg carbon and its improvement effect on laterite[J].Jiangsu Agricultural Sciences,2017,45(01):234-239.
点击复制

木薯渣基炭制备及对热带砖红壤的改良效果(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第45卷
期数:
2017年01期
页码:
234-239
栏目:
资源与环境
出版日期:
2017-01-05

文章信息/Info

Title:
Preparation of cassava dreg carbon and its improvement effect on laterite
作者:
冯丹1 邢巧2 葛成军1 李昉泽1 俞花美1 陈淼3
1.海南大学环境与植物保护学院,海南海口 570228; 2.广西大学轻工与食品工程学院,广西南宁 530004;
3.中国热带农业科学院环境与植物保护研究所,海南海口 571101
Author(s):
Feng Danet al
关键词:
木薯渣生物质炭砖红壤理化性质土壤改良剂土壤改良效果
Keywords:
-
分类号:
X712;S156.6
DOI:
-
文献标志码:
A
摘要:
针对海南当地酸性砖红壤,选用5种以木薯渣为前驱物在不同温度(350、450、550、650、750 ℃)下热解制备的生物质炭,研究施用不同量生物质炭(0、0.1%、0.5%、1.0%、5.0%)对砖红壤理化性质的影响,并初步探讨了生物质炭改良砖红壤的作用机制。结果表明,在所有5种生物质炭中,C含量远远大于其他元素。随着热解温度的升高,pH值逐渐增大,C/H增大,碱性基团增多,酸性官能团降低,生物质炭的比表面积、CEC、灰分均增大。生物质炭能有效降低砖红壤的容重和比重,分别平均下降5.43%和9.58%,增加砖红壤的田间持水量和孔隙度,分别平均上升167%和1.94%。添加生物质炭后土壤酸度降低,pH值上升了0.29~2.62。有机质含量、阳离子交换量显著增加,最高可分别增加2.67 g/kg和14.69 cmol/kg。砖红壤在加入生物质炭后有效养分明显增加,有效N增幅为10.38%~4368%,有效P最高增幅为195.05 g/kg,有效K最高增幅为1 226.27 g/kg。生物质炭能够有效改良砖红壤的理化性质,添加5.0%的650 ℃木薯渣炭改良效果优于其他处理。
Abstract:
-

参考文献/References:

[1]Marks E A,Mattana S,Alcaniz J M,et al. Gasifier biochar effects on nutrient availability,organic matter mineralization,and soil fauna activity in a multi-year Mediterranean trial[J]. Agriculture Ecosystems & Environment,2016,215(1):30-39.
[2]Liu Z X,Chen X M,Yan J,et al. Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil[J]. Catena,2014,123(12):45-51.
[3]Vogt R D,Seip H M,Larrsen T,et al. Potential acidifing capacity of deposition-experiences from regions with high NH4+ and dry deposition in China[J]. Science of the Total Environmental,2006,367(1):394-404.
[4]Yu Z H,Zhou L,Huang Y F,et al. Effects of a Manganese oxide-modified biochar composite on adsorption of arsenic in red soil[J]. Journal of Environmental Management,2015,163(11):155-162.
[5]Cambou A,Cardinael R,Kouakoua E,et al. Prediction of soil organic carbon stock using visible and near infrared reflectance spectroscopy(VNIRS) in the field[J]. Geoderma,2016,261(1):151-159.
[6]郭海超,周杰,罗雪华,等. 海南胶园不同母质发育砖红壤磷素形态特征研究[J]. 热带作物学报,2012,33(10):1724-1730.
[7]Lucke B,Kemnitz H,Baeumler R,et al. Red Mediterranean soils in Jordan:new insights in their origin,genesis,and role as environmental archives[J]. Catena,2014,112(SI):4-24.
[8]Yang J,Zheng H J,Chen X A,et al. Effects of tillage practices on nutrient loss and soybean growth in red-soil slope farmland[J]. International Soil and Water Conservation Research,2013,1(12):49-55.
[9]Rsberg I,Frank J,Stuanes A O. Effects of liming and fertilization on tree grouth and nutrient cycling in a Scots pine ecosystem in Norway[J]. Forest Ecology and Management,2006,237(1/2/3):191-207.
[10]胡德春,李贤胜,尚健. 四川酸性土壤石灰需求量方法的比较研究[J]. 土壤,2006,38(2):279-282.
[11]Paradelo R,Virto I,Chenu C. Net effect of liming on soil organic carbon stocks:a review[J]. Agriculture Ecosystems & Environment,2015,202(1):98-107.
[12]孟赐福,水建国. 石灰石粉细度与土壤酸度和产物产量的关系[J]. 浙江农业科学学报,1987,1(6):63-65.
[13]董宁宁,陈中敏,宋丽娜. 施用石灰和有机物质对酸性镉污染土壤的改良及其影响因素[J]. 农业环境科学学报,2008,27(2):590-595.
[14]Chan K Y,Zwieten L,Meszaris I,et al. Agronomic values of greeenwaste biochar as a soil amendment[J]. Australian Journal of Soil Research,2007,145(8):629-634.
[15]Novak J M,Busscher W J,Laird D L,et al. Impact of biochar amendment on fertility of a southeastern coastal plain soil[J]. Soil Science,2009,174(2):105-112.
[16]黄超,刘丽君,章明奎. 生物质炭对红壤性质和黑麦草生长的影响[J]. 浙江大学学报:农业与生命科学版,2011,37(4):439-445.
[17]Deluca T H,Mackenzie M D,Gundale M J. Biochar effects on soil nurtient transformation[M]//Biochar for environement management science and technology. Ladon:Earthscan,2009:251-280
[18]卢再亮,李九玉,徐仁扣. 钢渣与生物质炭配合施用对土壤酸度的改良效果[J]. 土壤,2013,45(4):722-726.
[19]Fristak V,Friesl-Hanl W,Wawra A,et al. Effect of biochar artificial ageing on Cd and Cu sorption characteristics[J]. Journal of Geochemical Exploration,2015,159(10):178-184.
[20]陈再明,陈宝梁,周丹丹. 水稻秸秆生物炭的结构特征及其对有机污染物的吸附性能[J]. 环境科学学报,2013,33(1):9-19.
[21]Chen B,Chen Z. Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures[J]. Chemosphere,2009,76(1):127-133.
[22]Chun Y,Sheng G Y,Chiou C T,et al. Compositions and sorptive properties of crop residue-derived chars[J]. Environmental Science & Technology,2004,38(17):4649-4655.
[23]张鹏. 生物质炭对西唯因与阿特拉津环境行为的影响[D]. 天津:南开大学,2013.
[24]Shinogi Y,Kanri Y. Pyrolysis of plant,animal and human waste:physical and chemical characterization of the pyrolytic products[J]. Bioresource Technology,2003,90(3):241-247.
[25]Cui X Q,Hao H L,Zhang C K,et al. Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars[J]. Science of the Total Environment,2016,539(1):566-575.
[26]吴崇书,邱志腾,章明奎. 施用生物质炭对不同类型土壤物理性状的影响[J]. 浙江农业科学,2014(10):1617-1619,1623.
[27]陈卓,史锟. 两个丘陵山地黏棕壤土壤剖面不同土层有机碳与比重的关系[J]. 中国农业科技导报,2008,10(2):119-122.
[28]郑纪勇,邵明安,张兴昌. 黄土区坡面表层土壤容重和饱和导水率空间变异特征[J]. 水土保持学报,2004,18(3):53-56.
[29]Laird D A,Fleming P,Davies D D,et al. Impact of biochar amendments on the quality of a typical midwestern aricultural soil[J]. Geoderma,2010,158(5):443-449.
[30]Yuan J H,Xu R K,Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology,2011,102(3):3488-3497.
[31]Gaskin J W,Steiner C,Harris K,et al. Effect of low-temperature pyrolysis conditions on biochar for agricultural use[J]. Transactions of the ASABE,2008,51(6):2061-2069.
[32]Glaser B,Haumaier L,Guggenberger G,et al. The ‘terra preta’ phenomenon:a model for sustainable agriculture in the humid tropics[J]. Naturwissenschaften,2001,88(1):37-41.
[33]袁金华,徐仁扣. 生物质炭对酸性土壤改良的作用的研究进展[J]. 土壤,2012,44(4):541-547.
[34]谢国雄,章明奎. 施用生物质炭对红壤有机碳矿化及其组分的影响[J]. 土壤通报,2014,12(2):413-418.
[35]Renck A,Lehmann J. Rapid water flow and transport of inorganic and organic nitrogen in a highly aggregated tropical soil[J]. Soil Science,2004,169(5):330-341.
[36]Kameyama K,Miyamoto T,Shiono T,et al. Influence of sugarcane bagasse-derived biochar application on nitrate leaching in calcaric dark red soil[J]. Journal of Environmental Quality,2012,41(4):1131-1137.
[37]Streubel J D,Collins H P,Garcia-Perez M,et al. Influence of contrasting biochar types on five soils at increasing rates of application[J]. Soil Science Society of America Journal,2011,75(4):1402-1413.
[38]Chintala R,Schumacher T E,Mcdonald L M,et al. Phosphorus sorption and availability from biochars and soil/biochar mixtures[J]. Clean-soil Air Water,2014,42(5):626-634.
[39]刘宏鸽,王火焰,周健民,等. 不同有效钾提取方法的原理与效率比较[J]. 土壤,2012,44(2):242-252.
[40]秦建光,余春江,聂虎,等. 秸秆燃烧中温度对钾转化与释放的影响[J]. 太阳能学报,2010,31(5):540-544.

相似文献/References:

[1]徐琪,段欣玲,刘颖,等.基施生物质炭对强筋春小麦植株营养及土壤养分供应的影响[J].江苏农业科学,2013,41(07):69.
 Xu Qi,et al.Effect of biochar used as base manure on plant nutrition status and soil nutrient provision of strong gluten spring wheat[J].Jiangsu Agricultural Sciences,2013,41(01):69.
[2]郑子松,姜永平,李纲,等.木薯渣复合基质在茄子育苗中的应用[J].江苏农业科学,2016,44(03):177.
 Zheng Zisong,et al.Application of cassava residue compound substrates in seedling cultivation of eggplant[J].Jiangsu Agricultural Sciences,2016,44(01):177.
[3]郑子松,王林闯,李刚,等.木薯渣复配基质在甘蓝育苗上的应用效果[J].江苏农业科学,2013,41(10):108.
 Zheng Zisong,et al.Application effect of cassava residue compound matrix on cultivation of Brassica oleracea seedlings[J].Jiangsu Agricultural Sciences,2013,41(01):108.
[4]彭天沁,徐刚,高文瑞,等.木薯渣资源化利用的研究进展[J].江苏农业科学,2013,41(11):10.
 Peng Tianqin,et al.Research progress of comprehensive utilization of cassava residue[J].Jiangsu Agricultural Sciences,2013,41(01):10.
[5]王富强,王海花,张禹,等.蚯蚓-木薯渣联合作用对热带城市污泥中重金属含量的影响[J].江苏农业科学,2016,44(05):437.
 Wang Fuqiang,et al.Effect of joint action of earthworm-cassava dregs on heavy metal content in tropical city sludge[J].Jiangsu Agricultural Sciences,2016,44(01):437.
[6]王富强,王海花,张禹,等.蚯蚓处理热带农业废弃物木薯渣的可行性[J].江苏农业科学,2016,44(06):457.
 Wang Fuqiang,et al.Feasibility of processing of tropical agricultural waste cassava dregs by earthworms Eisenia foetida[J].Jiangsu Agricultural Sciences,2016,44(01):457.
[7]杨卓,陈婧,揣莹.芦苇生物质炭的制备、表征及吸附性能[J].江苏农业科学,2016,44(11):464.
 Yang Zhuo,et al.Preparation,characterization and adsorption performance of reed biochar[J].Jiangsu Agricultural Sciences,2016,44(01):464.
[8]岳林,邢巧,吴晓晨,等.甘蔗渣基生物质炭对溶液中Cd(Ⅱ)的吸附解吸作用[J].江苏农业科学,2017,45(03):216.
 Yue Lin,et al.Adsorption and desorption of Cd(Ⅱ) by biochars derived from bagasse[J].Jiangsu Agricultural Sciences,2017,45(01):216.
[9]赵伟,丁弈君,孙泰朋,等.生物质炭对汞污染土壤吸附钝化的影响[J].江苏农业科学,2017,45(11):192.
 Zhao Wei,et al.Effects of biomass carbon on adsorption and passivation of mercury contaminated soil[J].Jiangsu Agricultural Sciences,2017,45(01):192.
[10]王宏燕,许毛毛,孟雨田,等.玉米秸秆与秸秆生物炭对2种黑土有机碳含量及碳库指数的影响[J].江苏农业科学,2017,45(12):228.
 Wang Hongyan,et al.Influences of maize straw and straw biochar on organic carbon content and carbon pool management index of two kinds of black soils[J].Jiangsu Agricultural Sciences,2017,45(01):228.

备注/Memo

备注/Memo:
收稿日期:2015-11-11
基金项目:国家自然科学基金(编号:21467008);海南省自然科学基金(编号:413123);热带作物种质资源保护与开发利用教育部重点实验室开放基金(编号:2013hckled-1)。
作者简介:冯丹(1991—),女,江西抚州人,硕士,研究方向为污染物环境行为。E-mail:fengdan0217@163.com。
通信作者:俞花美,博士,副教授,研究方向为环境生态学。E-mail:yuhuamei3007@163.com。
更新日期/Last Update: 2017-01-05