|本期目录/Table of Contents|

[1]郑欣,刘夏囡,郑胜男,等.镉胁迫下超氧阴离子对水稻幼苗根系生长和生长素分布动态变化的影响[J].江苏农业科学,2017,45(07):55-58.
 Zheng Xin,et al.Effects of superoxide anion on root growth and auxin distribution dynamic change of rice seedlings under cadmium stress[J].Jiangsu Agricultural Sciences,2017,45(07):55-58.
点击复制

镉胁迫下超氧阴离子对水稻幼苗根系生长和生长素分布动态变化的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第45卷
期数:
2017年07期
页码:
55-58
栏目:
遗传育种与耕作栽培
出版日期:
2017-04-20

文章信息/Info

Title:
Effects of superoxide anion on root growth and auxin distribution dynamic change of rice seedlings under cadmium stress
作者:
郑欣 刘夏囡 郑胜男 车轩 周士钊 迟世飞 邢伟 付童童 孙川惠 赵凤云
山东理工大学生命科学学院,山东淄博 255049
Author(s):
Zheng Xinet al
关键词:
生长素分布镉胁迫水稻根系超氧阴离子
Keywords:
-
分类号:
S511.01
DOI:
-
文献标志码:
A
摘要:
以DR5-GUS转基因水稻 (以水稻中花11为背景)为试验材料,分析镉胁迫下超氧阴离子(O-2·)介导的根系生长动态变化与生长素重新分布之间的关系。结果发现,在镉胁迫与非胁迫条件下DDC(SOD抑制剂)处理明显促进了根系的生长。GUS活性检测显示DDC和Cd+DDC处理条件下根系生长的动态变化与生长素浓度和分布的动态变化密切相关。进一步研究显示,DDC+BFA(蛋白运输抑制剂)/MG132 /(蛋白降解抑制剂)或Cd+DDC+BFA/MG132处理比DDC或Cd+DDC处理增强了GUS活性。这些结果证实O-2· 介导的生长素重新分布与蛋白转运/降解有密切关系,O-2· 与生长素信号之间存在交互作用。以上结果表明,适量的O-2· 通过蛋白转运/降解介导的生长素重新分布是镉胁迫及非胁迫条件下水稻幼苗根系生长特别是不定根和侧根生长所必需的。
Abstract:
-

参考文献/References:

[1]Rebouillat J,Dievart A,Verdeil J L,et al. Molecular genetics of rice root development[J]. Rice,2009,2(1):15-34.
[2]Huang F,Zago M,Abas L,et al. Phosphorylation of conserved PIN motifs directs Arabidopsis PIN1 polarity and auxin transport[J]. Plant Cell,2010,22(4):1129-1142.
[3]Sun J,Xu Y,Ye S,et al. Arabidopsis ASA1 is important for jasmonate-mediated regulation of auxin biosynthesis and transport during lateral root formation[J]. Plant Cell,2009,21(5):1495-1511.
[4]Zhao Y,Hu Y,Dai M,et al. The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice[J]. Plant Cell,2009,21(3):736-748.
[5]Tian Q,Chen F,Liu J,et al. Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots[J]. Journal of Plant Physiology,2008,165(9):942-951.
[6]Wang J,Hu H,Wang G,et al. Expression of PIN genes in rice (Oryza sativa L.):tissue specificity and regulation by hormones[J]. Molecular Plant,2009,2(4):823-831.
[7]Friml J. Subcellular trafficking of PIN auxin efflux carriers in auxin transport[J]. European Journal of Cell Biology,2010,89(2/3):231-235.
[8]Shibasaki K,Uemura M,Tsurumi S,et al. Auxin response in Arabidopsis under cold stress:underlying molecular mechanisms[J]. The Plant Cell,2009,21(12):3823-3838.
[9]Potters G,Pasternak T,Guisez Y,et al. Stress-induced morphogenic responses:growing out of trouble?[J]. Trends in Plant Science,2007,12(3):98-105.
[10]Lequeux H,Hermans C,Lutts S,et al. Response to copper excess in Arabidopsis thaliana:impact on the root system architecture,hormone distribution,lignin accumulation and mineral profile[J]. Plant Physiology and Biochemistry,2010,48(8):673-682.
[11]Pasternak T,Rudas V,Potters G,et al. Morphogenic effects of abiotic stress:reorientation of growth in Arabidopsis thaliana seedlings[J]. Environmental and Experimental Botany,2005,53(3):299-314.
[12]De Tullio M,Jiang K,Feldman L. Redox regulation of root apical meristem organization:connecting root development to its environment[J]. Plant Physiology and Biochemistry,2010,48(5):328-336.
[13]Liszkay A,van der Zalm E,Schopfer P. Production of reactive oxygen intermediates (O-2· ,H2O2,and ·OH) by maize roots and their role in wall loosening and elongation growth[J]. Plant Physiology,2004,136(2):3114-3123;discussion 3001.
[14]Kim S G,Kim S T,Kang S Y,et al. Proteomic analysis of reactive oxygen species (ROS)-related proteins in rice roots[J]. Plant Cell Reports,2008,27(2):363-375.
[15]Zhao F Y,Hu F,Han M M,et al. Superoxide radical and auxin are implicated in redistribution of root growth and the expression of auxin and cell-cycle genes in cadmium-stressed rice[J]. Russian Journal of Plant Physiology,2011,58(5):851-863.
[16]Zhao F Y,Han M M,Zhang S Y,et al. Hydrogen peroxide-mediated growth of the root system occurs via auxin signaling modification and variations in the expression of cell-cycle genes in rice seedlings exposed to cadmium stress[J]. Journal of Integrative Plant Biology,2012,54(12):991-1006.
[17]Jabs T,Dietrich R,Dangl J. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide[J]. Science (New York,N.Y.),1996,273(5283):1853-1856.
[18]Petersson S V,Johansson A I,Kowalczyk M,et al. An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis[J]. The Plant Cell,2009,21(6):1659-1668.

相似文献/References:

[1]张学艳,曹莹,孟军,等.生物炭对镉胁迫下水稻生长及光合产量的影响[J].江苏农业科学,2016,44(05):97.
 Zhang Xueyan,et al.Effect of biochar on growth and photosynthesis yield of rice under stress of cadmium[J].Jiangsu Agricultural Sciences,2016,44(07):97.
[2]马孟莉,卢丙越,刘艳红,等.镉对云南省主栽水稻品种幼苗生长的影响[J].江苏农业科学,2014,42(03):50.
 Ma Mengli,et al.Effect of cadmium on seedling growth of major rice cultivars in Yunnan Province[J].Jiangsu Agricultural Sciences,2014,42(07):50.
[3]陈豆豆,杨飞,蔡凤香,等.葡萄糖对水稻幼苗根系生长和生长素组织细胞分布的影响[J].江苏农业科学,2016,44(02):101.
 Chen Doudou,et al.Effects of glucose on seedling root system growth and auxin histiocytic distribution in rice[J].Jiangsu Agricultural Sciences,2016,44(07):101.
[4]姜永雷,唐探,陈嘉裔,等.镉胁迫对水蕨幼苗叶绿素荧光参数和生理指标的影响[J].江苏农业科学,2015,43(09):357.
 Jiang Yonglei,et al.Effects of cadmium stress on chlorophyll fluorescence parameters and physiological indices of Ceratopteris thalictroides seedlings[J].Jiangsu Agricultural Sciences,2015,43(07):357.
[5]鲜靖苹.盐及重金属胁迫对龟背竹生理抗性的影响[J].江苏农业科学,2016,44(11):241.
 Xian Jingping.Effects of salt and heavy metal stress on physiological resistance of Monstera deliciosa[J].Jiangsu Agricultural Sciences,2016,44(07):241.
[6]陈祖拥,范菲菲,官小云,等.镉胁迫对海菜花种子萌发及幼苗初期生理生化的影响[J].江苏农业科学,2016,44(11):482.
 Chen Zuyong,et al.Effects of cadmium stress on seed germination and seedling physiological and biochemical characteristics of Ottelia acuminata[J].Jiangsu Agricultural Sciences,2016,44(07):482.
[7]尚宏芹,高昌勇.表油菜素内酯对镉胁迫下小麦幼苗生长及生理特性的影响[J].江苏农业科学,2018,46(17):57.
 Shang Hongqin,et al.Effects of epibrassinolide on growth and physiological characteristics of wheat seedlings under CdM2+ stress[J].Jiangsu Agricultural Sciences,2018,46(07):57.
[8]管彬,周竹青.细胞自噬在拟南芥应答镉胁迫中的作用[J].江苏农业科学,2019,47(14):90.
 Guan Bin,et al.Role of autophagy in response to cadmium stress in Arabidopsis thaliana[J].Jiangsu Agricultural Sciences,2019,47(07):90.
[9]彭昌琴,徐玲玲,陈兴银,等.丛枝菌根真菌对镉胁迫下凤仙花生理特征的影响[J].江苏农业科学,2019,47(14):186.
 Peng Changqin,et al.Effects of arbuscular mycorrhizal fungi on physiological characteristics of Impatiens balsamina under cadmium stress[J].Jiangsu Agricultural Sciences,2019,47(07):186.
[10]李磊,韩成,王宵宵,等.镉胁迫下转基因水稻对根际土壤微生物的影响[J].江苏农业科学,2019,47(14):282.
 Li Lei,et al.Effect of transgenic rice on rhizospheric soil microorganisms under cadmium stress[J].Jiangsu Agricultural Sciences,2019,47(07):282.

备注/Memo

备注/Memo:
收稿日期:2016-02-26
基金项目:山东省自然科学基金 (编号:ZR2014DM010、ZR2015CL009);山东省淄博市科技发展计划(编号:111089、113106)。
作者简介:郑欣(1994—),女,山东济宁人。
通信作者:赵凤云,博士,教授,主要从事分子生物学研究。E-mail:zfy1226@126.com。
更新日期/Last Update: 2017-04-05