|本期目录/Table of Contents|

[1]张华崇,闫振华,赵树琪,等.二倍体棉花热激转录因子HSFs家族全基因组生物信息学分析[J].江苏农业科学,2017,45(20):35-42.
 Zhang Huachong,et al.Genome-wide analysis of transcription factor HSFs family in diploid cotton through bioinformatics technology[J].Jiangsu Agricultural Sciences,2017,45(20):35-42.
点击复制

二倍体棉花热激转录因子HSFs家族
全基因组生物信息学分析
(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第45卷
期数:
2017年20期
页码:
35-42
栏目:
生物技术
出版日期:
2017-10-20

文章信息/Info

Title:
Genome-wide analysis of transcription factor HSFs family in diploid cotton through bioinformatics technology
作者:
张华崇 闫振华 赵树琪 黄晓莉 戴宝生 李蔚
黄冈市农业科学院,湖北黄冈 438000
Author(s):
Zhang Huachonget al
关键词:
二倍体棉花热激转录因子全基因组生物信息学
Keywords:
-
分类号:
Q755
DOI:
-
文献标志码:
A
摘要:
热激因子(heat shock factors,HSFs)是生物体内调节热激应答的一类转录因子,在热胁迫信号转导和耐热性的产生过程中发挥了重要的作用。从已释放的二倍体亚洲棉和雷蒙德氏棉全基因组测序结果中分别鉴定到42个和40个HSFs蛋白家族成员,运用生物信息学分析其序列特征、亚细胞定位、聚类分析和保守基序等。结果表明,亚洲棉HSFs蛋白长度116~526个氨基酸,分子量13 748.4~60 028.2 u,等电点4.40~8.75;雷蒙德氏棉HSFs蛋白长度为190~528个氨基酸,分子量21 993.0~60 413.6 u,等电点4.36~9.50。染色体定位显示二倍体棉花中的HSFs基因不均匀分布在13条染色体上;聚类分析表明,HSFs蛋白序列分为A、B、C 3类,每一亚类中二倍体棉花与拟南芥的蛋白具有较高的同源性,趋向于聚集在一起,且每个亚组具有相同或相似的保守基序类型及排列顺序。
Abstract:
-

参考文献/References:

[1]Morimoto R I. Regulation of the heat shock transcriptional response:cross talk between a family of heat shock factors,molecular chaperones,and negative regulators[J]. Genes & Development,1998,12(24):3788-3796.
[2]Baniwal S K,Bharti K,Chan K Y,et al. Heat stress response in plants:a complex game with chaperones and more than twenty heat stress transcription factors[J]. Journal of Biosciences,2004,29(4):471-487.
[3]Wiederrecht G,Seto D,Parker C S. Isolation of the gene encoding the S. cerevisiae heat shock transcription factor[J]. Cell,1988,54(6):841-853.
[4]Scharf K D,Rose S,Zott W,et al. Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF[J]. Embo Journal,1990,9(13):4495-4501.
[5]Hübel A,Schffl F. Arabidopsis heat shock factor:isolation and characterization of the gene and the recombinant protein[J]. Plant Molecular Biology,1994,26(1):353-362.
[6]Scharf K D,Berberich T,Ebersberger I,et al. The plant heat stress transcription factor (Hsf) family:structure,function and evolution[J]. Biochimica Et Biophysica Acta,2012,1819(2):104-119.
[7]Sakurai H,Enoki Y. Novel aspects of heat shock factors:DNA recognition,chromatin modulation and gene expression[J]. FEBS Journal,2010,277(20):4140-4149.
[8]Kotak S,Port M,Ganguli A,et al. Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization[J]. The Plant Journal,2004,39(1):98-112.
[9]Wang J,Sun N,Deng T,et al. Genome-wide cloning,identification,classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum)[J]. BMC Genomics,2014,15(1):961.
[10]Harrison C J,Bohm A A,Nelson H C. Crystal structure of the DNA binding domain of the heat shock transcription factor[J]. Science,1994,263(5144):224-227.
[11]Grlich D,Kutay U. Transport between the cell nucleus and the cytoplasm[J]. Annual Review of Cell and Developmental Biology,1999,15:607-660.
[12]Heerklotz D,Dring P,Bonzelius F,et al. The balance of nuclear import and export determines the intracellular distribution and function of tomato heat stress transcription factor HsfA2[J]. Molecular and Cellular Biology,2001,21(5):1759-1768.
[13]Li F,Fan G,Wang K,et al. Genome sequence of the cultivated cotton Gossypium arboreum[J]. Nature Genetics,2014,46(6):567-572.
[14]Wang K,Wang Z,Li F,et al. The draft genome of a diploid cotton Gossypium raimondii[J]. Nature Genetics,2012,44(10):1098-1103.
[15]Finn R D,Coggill P,Eberhardt R Y,et al. The Pfam protein families database:towards a more sustainable future[J]. Nucleic Acids Research,2016,44(D1):279-285.
[16]Finn R D,Clements J,Eddy S R. HMMER web server:interactive sequence similarity searching[J]. Nucleic Acids Research,2011,39:29-37.
[17]Schultz J,Milpetz F,Bork P,et al. SMART,a simple modular architecture research tool:identification of signaling domains[J]. Proceedings of the National Academy of Sciences of the United States of America,1998,95(11):5857-5864.
[18]Jin J,He K,Tang X,et al. An Arabidopsis transcriptional regulatory map reveals distinct functional and evolutionary features of novel transcription factors[J]. Molecular Biology and Evolution,2015,32(7):1767-1773.
[19]阿布力孜,开赛尔,阿吉古丽,等. 干热风对棉花生长发育的危害及对策建议[J]. 农业科技通讯,2009(10):68-69.
[20]Nover L,Bharti K,Dring P,et al. Arabidopsis and the heat stress transcription factor world:how many heat stress transcription factors do we need?[J]. Cell Stress & Chaperones,2001,6(3):177-189.
[21]Guo J,Wu J,Ji Q,et al. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis[J]. Journal of Genetics and Genomics,2008,35(2):105-118.
[22]Chung E,Kim K M,Lee J H. Genome-wide analysis and molecular characterization of heat shock transcription factor family in Glycine max[J]. Journal of Genetics and Genomics,2013,40(3):127-135.
[23]Storozhenko S,De Pauw P,Van Montagu M,et al. The heat-shock element is a functional component of the Arabidopsis APX1 gene promoter[J]. Plant Physiology,1998,118(3):1005-1014.
[24]Panchuk I I,Volkov R A,Schffl F. Heat stress-and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis[J]. Plant Physiology,2002,129(2):838-853.
[25]Panikulangara T J,Eggers-Schumacher G,Wunderlich M,et al. Galactinol synthase 1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis[J]. Plant Physiology,2004,136(2):3148-3158.
[26]Nishizawa A,Yabuta Y,Yoshida E,et al. Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress[J]. The Plant Journal,2006,48(4):535-547.
[27]Ogawa D,Yamaguchi K,Nishiuchi T. High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth[J]. Journal of Experimental Botany,2007,58(12):3373-3383.
[28]Schramm F,Ganguli A,Kiehlmann E,et al. The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis[J]. Plant Molecular Biology,2006,60(5):759-772.
[29]Charng Y Y,Liu H C,Liu N Y,et al. A heat-inducible transcription factor,HsfA2,is required for extension of acquired thermotolerance in Arabidopsis[J]. Plant Physiology,2007,143(1):251-262.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2017-05-07
基金项目:国家棉花产业技术体系专项资金(编号:CARS-18-41);湖北省农业科技创新中心项目(编号:2016-620-001-03)。
作者简介:张华崇(1989—),男,河南安阳人,硕士,助理农艺师,主要从事棉花抗逆育种研究。E-mail:huachongzhang@163.com。
通信作者:李蔚,正高职高级农艺师,主要从事棉花育种、栽培和技术推广。E-mail:hbhgliwei@126.com。
更新日期/Last Update: 2017-10-20