|本期目录/Table of Contents|

[1]崔莉,宋祥云,杜利平,等.黄芩红外干燥特性及动力学模型研究[J].江苏农业科学,2017,45(20):216-221.
 Cui Li,et al.Study on infrared drying characteristics and kinetic model of Scutellaria baicalensis[J].Jiangsu Agricultural Sciences,2017,45(20):216-221.
点击复制

黄芩红外干燥特性及动力学模型研究(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第45卷
期数:
2017年20期
页码:
216-221
栏目:
贮藏加工与检测分析
出版日期:
2017-10-20

文章信息/Info

Title:
Study on infrared drying characteristics and kinetic model of Scutellaria baicalensis
作者:
崔莉1 宋祥云1 杜利平12 刘伟1 王晓1
1.山东省中药质量控制技术重点实验室山东省分析测试中心,山东济南 250014; 2.山东农业大学食品科学与工程学院,山东泰安 271018
Author(s):
Cui Liet al
关键词:
黄芩红外干燥动力学模型干燥温度干燥直径
Keywords:
-
分类号:
R282.4
DOI:
-
文献标志码:
A
摘要:
为研究黄芩的红外干燥特性及动力学模型,对不同温度(60、70、80 ℃)和根直径(1.12、0.84、0.56、0.44 cm)的黄芩进行红外线(红外)干燥,检测并计算水分比、干燥速率等干燥特性参数,拟合建立干燥动力学数学模型。结果表明,干燥温度和直径对黄芩干燥速率均有影响,干燥温度越高,干燥用时越短,直径越大,干燥用时越长,降速阶段为黄芩红外干燥的主要阶段。通过拟合黄芩干燥动力学数学模型发现,Page 模型对黄芩干燥过程的拟合性较好,模型的预测值与试验值吻合性好,可以用来预测和描述黄芩红外干燥的失水过程;黄芩干燥过程中的水分有效扩散系数(Deff)在1.429 84×10-10~5.004 46×10-10 m2/s范围内,且随着温度的升高,Deff增大;黄芩红外干燥平均活化能为 61.527 8 kJ/mol,表明黄芩红外干燥的主要阶段为降速阶段,Page 模型适合预测和描述黄芩的失水过程。
Abstract:
-

参考文献/References:

[1]张红医,赵淑军,成谦,等. 中药黄芩提取方法的优化[J]. 河北大学学报(自然科学版),2006,26(4):390-391.
[2]Chinnam N,Dadi P K,Sabri S A,et al. Dietary bioflavonoids inhibit Escherichia coli ATP synthase in a differential manner[J]. International Journal of Biological Macromolecules,2010,46(5):478-486.
[3]初正云,初明,滕宇. 黄芩苷体内抗流感病毒作用[J]. 中国中药杂志,2007,32(22):2413-2415.
[4]徐之平,赵贤良. 物料的干燥特性研究[J]. 上海机械学院学报,1994,16(3):45-52.
[5]朱俊霖,闫永红,张学文,等. 不同干燥方法对黄芩有效成分含量的影响[J]. 中国实验方剂学杂志,2012,18(5):7-9.
[6]中华人民共和国卫生部. 食品中水分的测定:GB 5009.3—2010[S]. 北京:中国标准出版社,2010.
[7]Falade K O,Abbo E S. Air-drying and rehydration characteristics of date palm (Phoenix dactylifera L.) fruits[J]. Journal of Food Engineering,2007,79(2):724- 730.
[8]Midilli A. Determination of pistachio drying behaviour and conditions in solar drying system[J]. International Journal of Energy Research,2001,25(8):715-725.
[9]Akgun N A,Doymaz I. Modelling of olive cake thin-layer drying process[J]. Journal of Food Engineering,2005,68(4):455-461.
[10]Thakor N J,Sokhansanj S,Sosulski F W,et al. Mass and dimensional changes of single canola kernels during drying[J]. Journal of Food Engineering,1999,40(3):153-160.
[11]Doungporn S,Poomsa-Ad N,Wiset L. Drying equations of Thai Hom Mali paddy by using hot air,carbon dioxide and nitrogen gases as drying media[J]. Food &Bioproducts Processing,2012,90(2):187-198.
[12]Wang Z F,Sun J H,Liao X J,et al. Mathematical modeling on hot air drying of thin layer apple pomace[J]. Food Research International,2007,40(1):39-46.
[13]Bruce D M. Exposed-layer barley drying:three models fitted to new data up to 150 ℃[J]. Journal of Agricultural Engineering Research,1985,32(4):337-348.
[14]Page G E. Factors influencing the maximum rates of air drying shelled corn in thin layers[D]. Purdue:Purdue University,1949.
[15]Henderson S M,Pabis S. Grain drying theory,Ⅱ. Temperature effects on drying coefficients[J]. Journal of Agricultural Engineering Research,1961,44(2):1111-1122.
[16]Togrul I T,Pehlivan D. Mathematical modeling of solar drying of apricots in thin layers[J]. Journal of Food Engineering,2002,55(3):209 -216.
[17]Henderson S M. Progress in developing the thin layer drying equation[J]. Transactions of the ASAE,1974,17(6):1167-1172.
[18]Diamante L M,Munro P A. Mathematical modeling of hot air drying of sweet potato slices[J]. International Journal of Food Science & Technology,2007,26(1):99-109.
[19]曾目成,毕金峰,陈芹芹,等. 猕猴桃切片中短波红外干燥特性及动力学模型[J]. 现代食品科技,2014,30(1):153-159.
[20]Tunde-Akintunde T Y. Mathematical modeling of sun andsolar drying of chilli pepper[J]. Renewable Energy,2011,36(8):2139-2145.

相似文献/References:

[1]田海丽,全雪丽,秦嘉泽,等.IBA浓度与培养基对黄芩不定根生物量和总黄酮含量的影响[J].江苏农业科学,2015,43(04):65.
 Tian Haili,et al.Effects of IBA concentrations and culture medium on biomass and content of total flavonoids in Scutellaria baicalensis Georgi adventitious roots[J].Jiangsu Agricultural Sciences,2015,43(20):65.
[2]孙永林,汤尚文,裴冬玲,等.湖北麦冬红外干燥特性与干燥模型[J].江苏农业科学,2017,45(02):163.
 Sun Yonglin,et al.Infrared radiation drying characteristics and modeling of Liriope spicata (Thunb.) Lour. var. prolifera Y. T. Ma[J].Jiangsu Agricultural Sciences,2017,45(20):163.
[3]李小玲,华智锐.温度与水分胁迫下黄芩的渗透调节能力与交叉关系研究[J].江苏农业科学,2023,51(21):162.
 Li Xiaoling,et al.Study on osmotic regulation ability and cross relationship of Scutellaria baicalensis under temperature and water stress[J].Jiangsu Agricultural Sciences,2023,51(20):162.

备注/Memo

备注/Memo:
收稿日期:2016-05-08
基金项目:山东省重点研发计划(编号:2015GSF119021);山东省科学院青年基金(编号:青基合字2014第5号)。
作者简介:崔莉(1983—),女,山东聊城人,博士,副研究员,研究方向为天然产物资源开发。Tel:(0531)68606191;E-mail:cuili0617@163.com。
通信作者:王晓,博士,研究员,研究方向为中药资源与天然产物。Tel:(0531)82605304;E-mail:wangx@sdas.org。
更新日期/Last Update: 2017-10-20