|本期目录/Table of Contents|

[1]徐逸卿,杜思源,蒋安纳,等.杨树和柳树基因组共线性的可视化分析[J].江苏农业科学,2018,46(08):22-27.
 Xu Yiqing,et al.Visualized analysis of collinearity between poplar and willow genomes[J].Jiangsu Agricultural Sciences,2018,46(08):22-27.
点击复制

杨树和柳树基因组共线性的可视化分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第46卷
期数:
2018年08期
页码:
22-27
栏目:
生物技术
出版日期:
2018-04-20

文章信息/Info

Title:
Visualized analysis of collinearity between poplar and willow genomes
作者:
徐逸卿 杜思源 蒋安纳 王启昂 薛倚鹭
南京林业大学信息科学技术学院,江苏南京 210037
Author(s):
Xu Yiqinget al
关键词:
共线性分析共线性可视化物种进化杨属柳属
Keywords:
-
分类号:
Q941+.2;S188
DOI:
-
文献标志码:
A
摘要:
基因的共线性分析是比较基因组学中的重要研究内容。为了研究杨柳科植物的进化机制,对杨属中的毛果杨和柳属中的簸箕柳进行基因组内和基因组间的共线性分析。在对共线性分析及其作图软件的对比分析后,采用MCScanX对杨树、柳树进行基因组内、基因组间的共线性分析,再利用VGSC针对不同的基因组内和组间共线性关系进行可视化分析,从而推测杨树向柳树进化的过程,为杨柳科植物的进化与起源提供重要的依据。
Abstract:
-

参考文献/References:

[1]Heywood V H,Moore D M,Richardson I B K,et al. Flowering plants of the world[M]. Oxford:Oxford University Press,1993:316.
[2]Isebrands J G,Richardson J. 21st session of the international poplar commission (IPC 2000). Poplar and willow culture:meeting the needs of society and the environment[J]. Art Education,2000,41(1):9-17.
[3]Tuskan G A,di Fazio S,Jansson S,et al. Supporting online material for the genome of black cottonwood,Populus trichocarpa (Torr. & Gray)[J]. Science,2006,313(5793):1596-1604.
[4]Dai X,Hu Q,Cai Q,et al. The willow genome and divergent evolution from poplar after the common genome duplication[J]. Cell Research,2014,24(10):1274-1277.
[5]Hou J,Ye N,Dong Z,et al. Major chromosomal rearrangements distinguish willow and poplar after the ancestral “Salicoid” genome duplication[J]. Genome Biology & Evolution,2016,8(6):1868-1875.
[6]Blackburn K B,Harrison J W H. A preliminary account of the chromosomes and chromosome behaviour in the salicaceae[J]. Annals of Botany,1924,38(150):361-378.
[7]Berlin S,Lagercrantz U,Arnold S V,et al. High-density linkage mapping and evolution of paralogs and orthologs in Salix and Populus[J]. BMC Genomics,2010,11(1):129.
[8]Tang H,Bowers J E,Wang X,et al. Synteny and collinearity in plant genomes[J]. Science,2008,320(5875):486-488.
[9]Dujon B,Sherman D,Fischer G,et al. Genome evolution in yeasts[J]. Nature,2004,430(6995):35-44.
[10]Nakatani Y,Takeda H,Kohara Y,et al. Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates[M]. Japan:Springer,2011.
[11]Lyons E,Pedersen B,Kane J,et al. Finding and comparing syntenic regions among Arabidopsis and the outgroups papaya,poplar,and grape:CoGe with rosids[J]. Plant Physiology,2008,148(4):1772-1781.
[12]Soderlund C,Bomhoff M,Nelson W M. SyMAP v3.4:a turnkey synteny system with application to plant genomes[J]. Nucleic Acids Research,2011,39(10):e68.
[13]Wang Y,Tang H,Debarry J D,et al. MCScanX:a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Research,2012,40(7):e49.
[14]Xu Y,Bi C,Wu G,et al. VGSC:A web-based vector graph toolkit of genome synteny and collinearity[J]. Biomed Research International,2016,2016(1):7823429.
[15]张勇,张守攻,齐力旺,等. 杨树——林木基因组学研究的模式物种[J]. 植物学报,2006,23(3):286-293.
[16]Grigoriev I V,Nordberg H,Shabalov I,et al. The genome portal of the Department of Energy Joint Genome Institute[J]. Nucleic Acids Research,2012,40:D26-D32.
[17]Vergara I A,Chen N. Using OrthoCluster for the detection of synteny blocks among multiple genomes[M]//Current Protocols in Bioinformatics. John Wiley & Sons Inc,2009.
[18]Zeng X,Nesbitt M J,Pei J,et al. OrthoCluster:a new tool for mining synteny blocks and applications in comparative genomics[C]//Proceedings of the International Conference on Extending Database TechnologyAdvances in Database Technology,2008:656-667.
[19]Vandepoele K,Saeys Y,Simillion C,et al. The automatic detection of homologous regions (ADHoRe) and its application to microcolinearity between Arabidopsis and rice[J]. Genome Research,2002,12(11):1792.
[20]Ling X,He X,Xin D. Detecting gene clusters under evolutionary constraint in a large number of genomes[J]. Bioinformatics,2009,25(5):571-577.
[21]Wang X,Shi X,Li Z,et al. Statistical inference of chromosomal homology based on gene colinearity and applications to Arabidopsis and rice[J]. BMC Bioinformatics,2006,7(1):447.
[22]Drillon G,Carbone A,Fischer G. SynChro:a fast and easy tool to reconstruct and visualize synteny blocks along eukaryotic chromosomes[J]. PLoS One,2014,9(3):e92621.
[23]Revanna K V,Chiu C C,Bierschank E,et al. GSV:a web-based genome synteny viewer for customized data[J]. BMC Bioinformatics,2011,12(1):316.
[24]Sullivan M J,Petty N K,Beatson S A. Easyfig:a genome comparison visualizer[J]. Bioinformatics,2011,27(7):1009-1010.
[25]Gascoyne R D,Krzywinski M,Birol I,et al. Circos:an information aesthetic for comparative genomics[J]. 2009,
[26]Dorn R D. A synopsis of American Salix[J]. Canadian Journal of Botany,2011,54(24):2769-2789.
[27]Skvortsov A K. Willows of Russia and adjacent countries:taxonomical and geographical revision[M]. Joensuu:University of Joensuu Press,1999:1-307.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2017-07-26
基金项目:国家重点研发计划(编号:2016YFD0600101);国家重点基础研究发展计划(编号:2012CB114505);南京林业大学大学生创新训练计划(编号:2017NFUSPITP226)。
作者简介:徐逸卿(1981—),男,江苏南京人,硕士,讲师,主要研究方向为计算机应用、生物信息学。E-mail:yiqingxu@njfu.edu.cn。
更新日期/Last Update: 2018-04-20