|本期目录/Table of Contents|

[1]郭玲玲,李钧敏,闫明.黄毛草莓和五叶草莓的耐热性及其对高温的响应[J].江苏农业科学,2018,46(09):127-131.
 Guo Lingling,et al.Thermotolerance of Fragaria nilgerrensis and F. pentaphylla and its response to high temperature[J].Jiangsu Agricultural Sciences,2018,46(09):127-131.
点击复制

黄毛草莓和五叶草莓的耐热性及其对高温的响应(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第46卷
期数:
2018年09期
页码:
127-131
栏目:
园艺与林学
出版日期:
2018-05-05

文章信息/Info

Title:
Thermotolerance of Fragaria nilgerrensis and F. pentaphylla and its response to high temperature
作者:
郭玲玲12 李钧敏2 闫明1
1.山西师范大学生命科学学院,山西临汾 041004; 2.浙江省植物进化生态学与保护重点实验室/台州学院生态研究所,浙江台州 318000
Author(s):
Guo Linglinget al
关键词:
野生草莓半致死温度高温生理生态五叶草莓黄毛草莓耐热性
Keywords:
-
分类号:
S668.401
DOI:
-
文献标志码:
A
摘要:
以黄毛草莓、五叶草莓为材料,测定高温半致死温度(LT50),并采用盆栽试验,探究40 ℃高温对二者生理生态特征的影响。结果表明,黄毛草莓、五叶草莓的LT50分别为51.43、50.70 ℃;40 ℃高温处理的黄毛草莓、五叶草莓与室温20 ℃/15 ℃(白天/夜晚)处理相比,其叶片净光合速率分别极显著降低56.7%、77.2%,气孔导度分别极显著升高80.7%、41.2%,胞间CO2浓度分别极显著增加17.6%、19.5%(P<0.01),蒸腾速率黄毛草莓显著下降67.2%、五叶草莓显著上升53.4%(P<0.05),相对叶绿素含量分别极显著降低56.7%、71.9%;黄毛草莓生物量、根冠比分别极显著下降37.1%、41.2%,五叶草莓生物量极显著下降47.0%、根冠比极显著上升47.4%;黄毛草莓MDA含量显著增加14.8%、五叶草莓MDA含量极显著增加28.5%,五叶草莓MDA含量高于黄毛草莓;黄毛草莓SOD活性极显著上升284.8%、五叶草莓SOD活性显著上升21.9%,而黄毛草莓SOD活性高于五叶草莓;40 ℃高温处理的黄毛草莓叶片下表皮角质层厚度显著增加37.7%,五叶草莓没有显著变化,蜡质含量均极显著降低,降幅分别达到14.6%、13.6%,黄毛草莓气孔密度极显著下降41.1%,气孔开度无显著变化,五叶草莓气孔密度、气孔开度分别显著上升10.9%、6.8%。
Abstract:
-

参考文献/References:

[1]Christou A,Filippou P,Manganaris G A,et al. Sodium hydrosulfide induces systemic thermotolerance to strawberry plants through transcriptional regulation of heat shock proteins and aquaporin[J]. BMC Plant Biology,2014,14(1):42-52.
[2]Kadir S,Sidhu G,Al-Khatib K. Strawberry (Fragaria xananassa Duch.) growth and productivity as affected by temperature[J]. HortScience,2006,41(6):1423-1430.
[3]郑毅. 温度胁迫对草莓叶片光合作用的影响[D]. 合肥:安徽农业大学,2005:9-10.
[4]钟霈霖,乔荣,王天文. 温度对夏秋草莓可溶性固形物含量的影响[J]. 贵州农业科学,2006,34(增刊1):53-54.
[5]朱薇,杨明挚. 中国野生草莓资源研究及利用进展[J]. 中国南方果树,2014,41(4):50-58.
[6]李洪雯,刘建军,陈克玲,等. 四川及其周边地区野生草莓资源调查、收集与评价[J]. 植物遗传资源学报,2012,13(6):946-951.
[7]张常隆,李扬苹,冯玉龙,等. 表型可塑性和局域适应在紫茎泽兰入侵不同海拔生境中的作用[J]. 生态学报,2009,29(4):1940-1946.
[8]莫惠栋. Logistic方程及其应用[J]. 江苏农学院学报,1983,4(2):53-57.
[9]Lafta A M,Lorenzen J H. Effect of high temperature on plant growth and carbohydrate metabolism in potato[J]. Plant Physiology,1995,109(2):637-643.
[10]Marcum K B. Cell membrane thermostability and whole-plant heat tolerance of Kentucky bluegrass[J]. Crop Science,1998,38(5):1214-1218.
[11]Bewley J D. Physiological aspects of desiccation tolerance[J]. Annual Review of Plant Biology,1979,30(1):195-238.
[12]李合生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社,2000:260-261.
[13]周小云,陈信波,徐向丽,等. 稻叶表皮蜡质提取方法及含量的比较[J]. 湖南农业大学学报,2007,33(3):273-276.
[14]夏莹莹,叶航,马锦林,等. 4个油茶品种的半致死温度与耐热性研究[J]. 中国农学通报,2012,28(4):58-61.
[15]孙震. 十种野生地被植物生态适应性的研究[D]. 北京:北京林业大学,2006:16-17.
[16]杜国栋,吕德国,赵玲,等. 高温对仁用杏光合特性及PSⅡ光化学活性的影响[J]. 应用生态学报,2011,22(3):701-706.
[17]Luomala E M,Laitinen K,Sutinen S,et al. Stomatal density,anatomy and nutrient concentrations of Scots pine needles are affected by elevated CO2 and temperature[J]. Plant Cell and Environment,2005,28(6):733-749.
[18]李海波,李全英,陈温福,等. 氮素不同用量对水稻叶片气孔密度及有关生理性状的影响[J]. 沈阳农业大学学报,2003,34(5):340-343.
[19]尚永申.水稻耐高温突变体hst(heat-shock tolerance)分子生理研究[D]. 杭州:浙江大学,2011:20-21.
[20]Feierabend J,Mikus M. Occurrence of a high temperature sensitivity of chloroplast ribosome formation in several higher plants[J]. Plant Physiology,1977,59(5):863-867.
[21]Mohanty S,Grimm B,Tripathy B C. Light and dark modulation of chlorophyll biosynthetic genes in response to temperature[J]. Planta,2006,224(3):692-699.
[22]陈芳,郑炜君,李盼松,等. 小麦耐热性鉴定方法及热胁迫应答机理研究进展[J]. 植物遗传资源学报,2013,14(6):1213-1220.
[23]Hutchings M J. Foraging in plants:the role of morphological plasticity in resource acquisition[J]. Advances in Ecological Research,1994,25(3):159-238.
[24]金不换,陈雅君,吴艳华,等. 早熟禾不同品种根系分布及生物量分配对干旱胁迫的响应[J]. 草地学报,2009,17(6):813-816.
[25]Vile D,Pervent M,Belluau M,et al. Arabidopsis growth under prolonged high temperature and water deficit:independent or interactive effects?[J]. Plant Cell and Environment,2012,35(4):702-718.
[26]吕晓敏,王玉辉,周广胜,等. 温度与降水协同作用对短花针茅生物量及其分配的影响[J]. 生态学报,2015,35(3):753-760.
[27]Wahid A,Gelani S,Ashraf M,et al. Heat tolerance in plants:an overview[J]. Environmental and Experimental Botany,2007,61(3):199-223.
[28]Edelmann H G,Neinhuis C,Bargel H. Influence of hydration and temperature on the rheological properties of plant cuticles and their impact on plant organ integrity[J]. Journal of Plant Growth Regulation,2005,24(2):116-126.
[29]王家训. 柑桔叶片不同叶龄角质层和蜡质的季节变化[J]. 华中师范大学学报:自然科学版,1989,23(2):247-252.
[30]周玲艳,姜大刚,李静,等. 逆境处理下水稻叶角质层蜡质积累及其与蜡质合成相关基因OsGL1表达的关系[J]. 作物学报,2012,38(36):1115-1120.

相似文献/References:

[1]李艰,周广柱.低温胁迫下3种竹柳品系的抗寒性[J].江苏农业科学,2016,44(06):307.
 Li Jian,et al.Cold resistance of 3 strains of bamboo willow under low temperatures[J].Jiangsu Agricultural Sciences,2016,44(09):307.
[2]杨超英,王芳,王舰.低温驯化对马铃薯半致死温度的影响[J].江苏农业科学,2014,42(04):80.
 Yang Chaoying,et al.Effect of cold acclimation on semi-lethal temperature of potato[J].Jiangsu Agricultural Sciences,2014,42(09):80.
[3]周玉珍,钱剑林,张 林,等.路易斯安娜鸢尾品种的耐寒性比较与筛选[J].江苏农业科学,2015,43(07):179.
 Zhou Yuzheng,et al.Comparison of cold resistance and screening for Louisiana iris varieties[J].Jiangsu Agricultural Sciences,2015,43(09):179.
[4]施明,谢军,徐美隆,等.贺兰山东麓8个酿酒葡萄品种抗寒性比较[J].江苏农业科学,2017,45(05):137.
 Shi Ming,et al.Comparison of cold resistance of 8 wine grape cultivars in eastern foot of Helan Mountain[J].Jiangsu Agricultural Sciences,2017,45(09):137.
[5]彭远琴,赵金星,邱志浩,等.低温胁迫下橄榄耐寒性研究[J].江苏农业科学,2019,47(21):207.
 Peng Yuanqin,et al.Study on cold tolerance of olives under low temperature stress[J].Jiangsu Agricultural Sciences,2019,47(09):207.
[6]李扬,凌永胜,林金秀.电导率法配合田间霜冻鉴定福建省主栽马铃薯材料耐寒性[J].江苏农业科学,2021,49(4):45.
 Li Yang,et al.Identification of cold resistance of main potato materials in Fujian Province by conductivity method combined with field frost[J].Jiangsu Agricultural Sciences,2021,49(09):45.

备注/Memo

备注/Memo:
收稿日期:2017-01-31
基金项目:国家自然科学基金(编号:31261120580)。
作者简介:郭玲玲(1991—),女,山西大同人,硕士研究生,从事植物生理生态研究。E-mail:1615956695@qq.com。
通信作者:闫明(1974—),男,博士,副教授,主要从事生态学研究。E-mail:mycorrhiza@sina.com。
更新日期/Last Update: 2018-05-05