|本期目录/Table of Contents|

[1]吴晓烽,秦竹,史海健,等.抗菌药物递送系统的研究进展[J].江苏农业科学,2018,46(10):5-9.
 Wu Xiaofeng,et al.Research progress of antimicrobial drug delivery systems[J].Jiangsu Agricultural Sciences,2018,46(10):5-9.
点击复制

抗菌药物递送系统的研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第46卷
期数:
2018年10期
页码:
5-9
栏目:
专论与综述
出版日期:
2018-05-20

文章信息/Info

Title:
Research progress of antimicrobial drug delivery systems
作者:
吴晓烽1 秦竹2 史海健1 余刚2 董瑶1
1.南京工业大学化学化工学院,江苏南京 211800; 2.江苏省农业科学院农业设施与装备研究所,江苏南京 210014
Author(s):
Wu Xiaofenget al
关键词:
抗菌药物递送系统递送载体耐药性脂质体纳米粒
Keywords:
-
分类号:
S853.7
DOI:
-
文献标志码:
A
摘要:
当前养殖环境下,畜禽细菌感染性疾病的频发及抗生素长期滥用的风险,使得高效广谱的抗菌药物创新研究迫在眉睫。药物递送系统可以将药物包裹于递送载体内部,于特定部位控制释放,具有提高药物靶向性、增加药物体内稳定性及提高药物治疗指数方面的优势,是解决当前抗菌药物耐药性、体内残留、体内不稳定等几大突出问题的有效途径之一。从细菌耐药性机制及抗菌药物递送系统的设计思路入手,总结纳米乳液、脂质体、聚合物纳米粒、固体脂质纳米粒等载体结构类型在抗菌药物递送中的最新研究进展,对兽用抗菌药物递送系统的研究与商品化开发起到借鉴作用。
Abstract:
-

参考文献/References:

[1]程古月,郝海红,谢书宇,等. 抗生素替代品的研究进展[J]. 中国农学通报,2014,30(35):97-106.
[2]刘秀玲,卢静义. 抗生素在畜牧业中的应用现状及其潜在危害分析[J]. 兽医导刊,2012(2):46-47,54.
[3]Huczyński A,Stefańska J,Pismienny M,et al. Spectroscopic,semiempirical studies and antibacterial activity of new urethane derivatives of natural polyether antibiotic:monensin A[J]. Journal of Molecular Structure,2013,1034(6):198-206.
[4]Park S R,Park J W,Ban Y H,et al. 2-Deoxystreptamine-containing aminoglycoside antibiotics:recent advances in the characterization and manipulation of their biosynthetic pathways[J]. Natural Product Reports,2013,30(1):11-20.
[5]李燕荣,兰邹然,姜平. 新型抗生素替代品研究进展[J]. 兽药天地,2014(9):54-56.
[6]Millet S,Maertens L. The European ban on antibiotic growth promoters in animal feed:from challenges to opportunities[J]. Veterinary Journal,2011,187(2):143-144.
[7]王兴顺,耿艺介,李文楚. 抗菌肽抗菌机制及其应用研究进展[J]. 微生物学免疫学进展,2012,40(4):70-76.
[8]陈卫,王永禄,李学明,等. 抗生素载体系统克服耐药细菌的研究进展[J]. 中国新药杂志,2012,21(18):2168-2172.
[9]Xiong M H,Bao Y,Yang X Z,et al. Delivery of antibiotics with polymeric particles[J]. Advanced Drug Delivery Reviews,2014,78:63-76.
[10]Stebbins N D,Ouimet M A,Uhrich K E. Antibiotic-containing polymers for localized,sustained drug delivery[J]. Advanced Drug Delivery Reviews,2014,78:77-87.
[11]Lin Y H,Chiou S F,Lai C H,et al. Formulation and evaluation of water-in-oil amoxicillin-loaded nanoemulsions using for Helicobacter pylori eradication[J]. Process Biochemistry,2012,47(10):1469-1478.
[12]Jain V,Singodia D,Gupta G K,et al. Ciprofloxacin surf-plexes in sub-micron emulsions:a novel approach to improve payload efficiency and antimicrobial efficacy[J]. International Journal of Pharmaceutics,2011,409(1/2):237-244.
[13]杨雪峰,宇红梅,孙红武,等. 阿莫西林纳米粒对沙门菌的体外抗菌后效应[J]. 畜牧与兽医,2012,44(2):79-81.
[14]杨雪峰,齐永华,宁红梅,等. 恩诺沙星纳米乳的制备及其质量评价[J]. 浙江大学学报(农业与生命科学版),2012,38(6):693-699.
[15]Allen T M,Cullis P R. Liposomal drug delivery systems:from concept to clinical applications[J]. Advanced Drug Delivery Reviews,2013,65(1):36-48.
[16]Gregoriadis G. Drug entrapment in liposomes[J]. FEBS Letters,1973,36(3):292-296.
[17]Wang B,Zhang L,Bae S C,et al. Nanoparticle-induced surface reconstruction of phospholipid membranes[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(47):18171-18175.
[18]Muppidi K,Wang J,Betageri G,et al. PEGylated liposome encapsulation increases the lung tissue concentration of vancomycin[J]. Antimicrobial Agents and Chemotherapy,2011,55(10):4537-4542.
[19]Rukholm G,Mugabe C,Azghani A O,et al. Antibacterial activity of liposomal gentamicin against Pseudomonas aeruginosa:a time-kill study[J]. International Journal of Antimicrobial Agents,2006,27(3):247-252.
[20]Misra R,Sahoo S K. Antibacterial activity of doxycycline-loaded nanoparticles[J]. Methods in Enzymology,2012,509:61-85.
[21]Lai P,Daear W,Lbenberg R,et al. Overview of the preparation of organic polymeric nanoparticles for drug delivery based on gelatine,chitosan,poly(D,L-lactide-co-glycolic acid) and polyalkylcyanoacrylate[J]. Colloids and Surfaces B-Biointerfaces,2014,118:154-163.
[22]Zhang L,Pornpattananangku D,Hu C M,et al. Development of nanoparticles for antimicrobial drug delivery[J]. Current Medicinal Chemistry,2010,17(6):585-594.
[23]Jeong Y I,Na H S,Seo D H,et al. Ciprofloxacin-encapsulated poly(DL-lactide-co-glycolide) nanoparticles and its antibacterial activity[J]. International Journal of Pharmaceutics,2008,352(1/2):317-323.
[24]Toti U S,Guru B R,Hali M,et al. Targeted delivery of antibiotics to intracellular chlamydial infections using PLGA nanoparticles[J]. Biomaterials,2011,32(27):6606-6613.
[25]Zakeri-Milani P,Loveymi B D,Jelvehgari M,et al. The characteristics and improved intestinal permeability of vancomycin PLGA-nanoparticles as colloidal drug delivery system[J]. Colloids and Surfaces B-Biointerfaces,2013,103(1):174-181.
[26]Chakraborty S P,Sahu S K,Mahapatra S K,et al. Nanoconjugated vancomycin:new opportunities for the development of anti-VRSA agents[J]. Nanotechnology,2010,21(10):105103.
[27]Maya S,Indulekha S,Sukhithasri V,et al. Efficacy of tetracycline encapsulated O-carboxymethyl chitosan nanoparticles against intracellular infections of Staphylococcus aureus[J]. International Journal of Biological Macromolecules,2012,51(4):392-399.
[28]Kheradmandnia S,Vasheghani-Farahani E,Nosrati M,et al. Preparation and characterization of ketoprofen-loaded solid lipid nanoparticles made from beeswax and carnauba wax[J]. Nanomedicine:Nanotechnology,Biology,and Medicine,2010,6(6):753-759.
[29]Brewer E,Coleman J,Lowman A. Emerging technologies of polymeric nanoparticles in cancer drug delivery[J]. Journal of Nanomaterials,2011,2011:1-10.
[30]Jain D,Banerjee R. Comparison of ciprofloxacin hydrochloride-loaded protein,lipid,and chitosan nanoparticles for drug delivery[J]. Journal of Biomedical Materials Research Part B-Applied Biomaterials,2008,86(1):105-112.
[31]Wang X F,Zhang S L,Zhu L Y,et al. Enhancement of antibacterial activity of tilmicosin against Staphylococcus aureus by solid lipid nanoparticles in vitro and in vivo[J]. Veterinary Journal,2012,191(1):115-120.
[32]Wang Y,Zhu L,Dong Z,et al. Preparation and stability study of norfloxacin-loaded solid lipid nanoparticle suspensions[J]. Colloids and Surfaces B-Biointerfaces,2012,98(10):105-111.
[33]黄平全. 头孢噻呋钠-壳聚糖纳米粒的制备及相关性质研究[D]. 雅安:四川农业大学,2010.

相似文献/References:

[1]徐磊,孙博怿,盛鹏程,等.湖州地区典型水产养殖池塘中抗菌药物的污染特征[J].江苏农业科学,2019,47(11):210.
 Xu Lei,et al.Pollution characteristics of antibiotics in typical aquaculture ponds in Huzhou area[J].Jiangsu Agricultural Sciences,2019,47(10):210.
[2]刘惠芬,王安皆,刘文光,等.甲磺酸培氟沙星对家蚕细菌病的防治效果[J].江苏农业科学,2020,48(23):175.
 Liu Huifen,et al.Control effect of pefloxacin mesylate on Bombyx mori bacterial disease[J].Jiangsu Agricultural Sciences,2020,48(10):175.

备注/Memo

备注/Memo:
收稿日期:2016-12-06
基金项目:国家自然科学基金(编号:31302141);江苏省自然科学基金(编号:BK20141379)。
作者简介:吴晓烽(1992—),男,江苏镇江人,硕士研究生,主要从事药物递送载体、及药物合成研究。E-mail:wuxiaofeng@njtech.edu.cn。
通信作者:秦竹,博士,副研究员,主要从事兽药递送载体、及抗菌材料研究,E-mail:qinz0514@gmail.com;史海健,博士,教授,主要从事有机化学相关的合成研究,E-mail:shihj@njtech.edu.cn。
更新日期/Last Update: 2018-05-20