|本期目录/Table of Contents|

[1]李霄,陈婷,鲍玲莉,等.甘蓝型油菜BnNPR1的序列及其环境信号响应分析[J].江苏农业科学,2018,46(14):19-24.
 Li Xiao,et al.Sequence analysis of BnNPR1 in Brassica napus and its responses to environmental signals[J].Jiangsu Agricultural Sciences,2018,46(14):19-24.
点击复制

甘蓝型油菜BnNPR1的序列及其环境信号响应分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第46卷
期数:
2018年第14期
页码:
19-24
栏目:
生物技术
出版日期:
2018-07-25

文章信息/Info

Title:
Sequence analysis of BnNPR1 in Brassica napus and its responses to environmental signals
作者:
李霄 陈婷 鲍玲莉 谭小力 张志燕 王政
江苏大学生命科学研究院,江苏镇江 212013
Author(s):
Li Xiaoet al
关键词:
甘蓝型油菜BnNPR1环境信号表达响应基因克隆序列分析
Keywords:
-
分类号:
S565.401
DOI:
-
文献标志码:
A
摘要:
为了研究油菜NPR1(nonexpressor of pathogenesis-related genes 1)基因对各种环境胁迫信号及植物防卫激素信号的表达响应,以甘蓝型油菜品种宁油12为材料,采用同源克隆法克隆了甘蓝型油菜(Brassica napus L.) NPR1基因BnNPR1的cDNA序列。序列分析表明,BnNPR1编码的蛋白序列由579个氨基酸残基组成,含有1个锚定蛋白重复序列结构和1个BTB/POZ结构域,与AtNPR1的序列相似性达到73%。烟草叶片瞬时表达分析显示,BnNPR1编码1个细胞核定位蛋白;实时荧光定量PCR分析显示,BnNPR1在根、茎和叶组织器官中特异性表达,其中在根中表达量极为显著,并且对4 ℃低温、PEG溶液以及水杨酸和甲基茉莉酸等的处理呈显著上调表达,而对K2Cr2O7和NaCl溶液处理则呈显著下调表达。这些结果表明,BnNPR1是低温、重金属、干旱、高盐以及水杨酸(SA)和茉莉酸(JA)等防卫信号分子的响应基因,本研究结果将为进一步分析BnNPR1在油菜抗逆中的功能及其机制提供线索。
Abstract:
-

参考文献/References:

[1]Cao H,Glazebrook J,Clarke J D,et al. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats[J]. Cell,1997,88(1):57-63.
[2]Spoel S H,Koornneef A,Claessens S M,et al. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol[J]. Plant Cell,2003,15(3):760-770.
[3]Cao H,Bowling S A,Gordon A S,et al. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance[J]. Plant Cell,1994,6(11):1583-1592.
[4]Yu D,Chen C,Chen Z. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression[J]. Plant Cell,2001,13(7):1527-1540.
[5]Ryals J,Weymann K,Lawton K,et al. The Arabidopsis NIM1 protein shows homology to the mammalian transcription factor inhibitor I kappa B[J]. Plant Cell,1997,9(3):425-439.
[6]Mou Z,Fan W,Dong X. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes[J]. Cell,2003,113(7):935-944.
[7]Sugano S,Jiang C J,Miyazawa S I,et al. Role of OsNPR1 in rice defense program as revealed by genome-wide expression analysis[J]. Plant Molecular Biology,2010,74(6):549-562.
[8]Zhang J Y,Qu S C,Qiao Y S,et al. Overexpression of the Malus hupehensis MhNPR1 gene increased tolerance to salt and osmotic stress in transgenic tobacco[J]. Molecular Biology Reports,2014,41(3):1553-1561.
[9]Jayakannan M,Bose J,Babourina O,et al. Salicylic acid in plant salinity stress signalling and tolerance[J]. Plant Growth Regulation,2015,76(1):25-40.
[10]Jayakannan M,Bose J,Babourina O,et al. The NPR1-dependent salicylic acid signalling pathway is pivotal for enhanced salt and oxidative stress tolerance in Arabidopsis[J]. Journal of Experimental Botany,2015,66(7):1865-1875.
[11]Rengasamy P. World salinization with emphasis on Australia[J]. Journal of Experimental Botany,2006,57(5):1017-1023.
[12]Liu J Y,Zhu Y,Huang L L,et al. Combined effect of ethylene- and salicylic acid-signaling insensitive mutation on Arabidopsis response to low temperature[J]. Biologia Plantarum,2016,60(3):523-531.
[13]Xia J C,Zhao H,Liu W Z,et al. Role of cytokinin and salicylic acid in plant growth at low temperatures[J]. Plant Growth Regulation,2008,57(3):211-221.
[14]Hao L,Zhao Y,Jin D D,et al. Salicylic acid-altering Arabidopsis mutants response to salt stress[J]. Plant and Soil,2012,354(7):81-95.
[15]Zhang J Y,Qu S C,Du X L,et al. Overexpression of the Malus hupehensis MhTGA2 gene,a novel bZIP transcription factor for increased tolerance to salt and osmotic stress in transgenic tobacco[J]. International Journal of Plant Sciences,2012,59(5):441-453.
[16]Quilis J,Peas G,Messeguer J,et al. The Arabidopsis AtNPR1 inversely modulates defense responses against fungal,bacterial,or viral pathogens while conferring hypersensitivity to abiotic stresses in transgenic rice[J]. Molecular Plant-Microbe Interactions,2008,21(9):1215-1231.
[17]陈宇. 油菜在多种逆境条件下qRT-PCR内参基因的稳定性评估及抗逆相关基因的表达分析[D]. 镇江:江苏大学,2014.
[18]Chou K C,Shen H B. Plant-mPLoc:a top-down strategy to augment the power for predicting plant protein subcellular localization[J]. PLoS One,2010,5(6):e11335.
[19]Wang Z,Chen Y,Fang H,et al. Selection of reference genes for quantitative reverse-transcription polymerase chain reaction normalization in Brassica napus under various stress conditions[J]. Molecular Genetics and Genomics,2014,289(5):1023-1035.
[20]汪雷,刘瑶,丁一娟,等. 油菜菌核病研究进展[J]. 西北农林科技大学学报(自然科学版),2015,43(10):85-93.
[21]Kallenbach M,Alagna F,Baldwin I T,et al. Nicotiana attenuata SIPK,WIPK,NPR1,and fatty acid-amino acid conjugates participate in the induction of jasmonic acid biosynthesis by affecting early enzymatic steps in the pathway[J]. Plant Signaling & Behavior,2010,152(1):96-106.
[22]Yi S Y,Min S R,Kwon S Y. NPR1 is instrumental in priming for the enhanced flg22-induced MPK3 and MPK6 activation[J]. Plant Pathology Journal,2015,31(2):192-194.

相似文献/References:

[1]彭琦,张洁夫,张维,等.甘蓝型油菜裂角性快速鉴定的方法及其应用[J].江苏农业科学,2014,42(11):128.
 Peng Qi,et al(8).Rapid identification method of crack angle of Brassica napus and its application[J].Jiangsu Agricultural Sciences,2014,42(14):128.
[2]徐亮.青海不同海拔环境对甘蓝型油菜种子油脂和干物质积累的影响[J].江苏农业科学,2015,43(12):95.
 Xu Liang.Effects of altitude environment on oil and dry matter accumulation in Brassica napus seeds in Qinghai Province[J].Jiangsu Agricultural Sciences,2015,43(14):95.
[3]谢雅晶,武爱华,刘贤金.青杂5号甘蓝型油菜的高效再生及农杆菌侵染转化体系的建立[J].江苏农业科学,2015,43(12):17.
 Xie Yajing,et al.High efficiency regeneration and agrobacterium-mediated transformation system of Brassica napus L. “Qinza No.5” with insect resistant gene[J].Jiangsu Agricultural Sciences,2015,43(14):17.
[4]李爱民,张永泰,惠飞虎,等.杂交油菜新品种扬优10号的选育[J].江苏农业科学,2013,41(07):88.
 Li Aimin,et al.Breeding of new hybrid rapeseed cultivar “Yangyou No.10”[J].Jiangsu Agricultural Sciences,2013,41(14):88.
[5]李爱民,周德银,惠飞虎,等.大籽粒优质甘蓝型油菜新品种扬油9号的选育[J].江苏农业科学,2014,42(02):78.
 Li Aimin,et al.Breeding of new Brassica napus cultivar“Yangyou No.9” with big grains and high quality[J].Jiangsu Agricultural Sciences,2014,42(14):78.
[6]淡亚彬,杜德志.甘蓝型油菜心叶颜色性状的遗传和AFLP标记的筛选[J].江苏农业科学,2016,44(04):90.
 Dan Yabin,et al.Inheritance of central leaf color trait in Brassica napus and screening of AFLP markers for that trait[J].Jiangsu Agricultural Sciences,2016,44(14):90.
[7]付三雄,戚存扣,张洁夫,等.高产、高油甘蓝型油菜宁油22的选育与栽培要点[J].江苏农业科学,2016,44(02):111.
 Fu Sanxiong,et al.Breeding and cultivation techniques of Brassica napus “Ningyou 22” with high yield and high oil content[J].Jiangsu Agricultural Sciences,2016,44(14):111.
[8]张维,张洁夫,浦惠明,等.神舟十号搭载甘蓝型油菜种子SP1代性状调查[J].江苏农业科学,2015,43(09):130.
 Zhang Wei,et al.Trait investigation of SP1 generation of Brassica napus seed equipped in Shenzhou Ten[J].Jiangsu Agricultural Sciences,2015,43(14):130.
[9]马明莉,周文波,钟雪梅,等.外源水杨酸对干旱胁迫下甘蓝型油菜幼苗生理特性的影响[J].江苏农业科学,2015,43(06):84.
 Ma Mingli,et al.Effect of exogenous salicylic acid on physiological characteristics of Brassica napus L. seedlings under drought stress[J].Jiangsu Agricultural Sciences,2015,43(14):84.
[10]陈纪鹏,刘小林,胡月清.甘蓝型油菜与黑芥种间杂种基因组亲缘关系研究[J].江苏农业科学,2015,43(06):87.
 Chen Jipeng,et al.Study on genome affinity of interspecific hybrids between Brassica napus and B. nigra[J].Jiangsu Agricultural Sciences,2015,43(14):87.

备注/Memo

备注/Memo:
收稿日期:2017-01-22
基金项目:国家自然科学基金(编号:31071672);江苏大学高级专业人才科研启动基金(编号:09JDG061)。
作者简介:李霄(1991—),女,山东潍坊人,硕士,主要从事油菜功能基因组学方面的研究。E-mail:18252585951@163.com。
通信作者:王政,博士,副研究员,主要从事油菜功能基因组学方面的研究。E-mail:wangzheng4466@163.com。
更新日期/Last Update: 2018-07-20