|本期目录/Table of Contents|

[1]朱兆静,潘虎,郭俊,等.纤维小体结构及其功能的研究进展[J].江苏农业科学,2018,46(19):12-16.
 Zhu Zhaojing,et al.Research progress on structure and function of cellulosome[J].Jiangsu Agricultural Sciences,2018,46(19):12-16.
点击复制

纤维小体结构及其功能的研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第46卷
期数:
2018年第19期
页码:
12-16
栏目:
专论与综述
出版日期:
2018-10-05

文章信息/Info

Title:
Research progress on structure and function of cellulosome
作者:
朱兆静12 潘虎13 郭俊12 卢向阳12 王翀12 田云12
1.湖南省农业生物工程研究所,湖南长沙 410128; 2.湖南农业大学生物科学技术学院,湖南长沙 410128;
3.西藏自治区农牧科学院农业质量标准与检测研究所,西藏拉萨 850000
Author(s):
Zhu Zhaojinget al
关键词:
纤维小体多酶复合体组装模式生物质人工纤维小体
Keywords:
-
分类号:
S182
DOI:
-
文献标志码:
A
摘要:
纤维素作为地球上数量最大的可再生资源,因其难以降解,造成了以纤维素为主的生物资源的极大浪费。纤维小体(cellulosome)是厌氧生物产生的胞外多酶复合体,能够高效地降解纤维素,是开发利用纤维素的重要途径之一。目前,对纤维小体的研究主要集中在基因和基因组水平,而对纤维小体多酶复合体的结构和功能方面的研究相对缺乏。本文结合国内外对纤维小体最新的研究状况,综述了纤维小体多酶复合体的组装模式及其功能,并讨论了纤维小体用于生物质降解中存在的主要问题,以期为人工纤维小体的改造和纤维素资源的利用提供更多的理论基础。
Abstract:
-

参考文献/References:

[1]Ragauskas A J,Williams C K,Davison B H,et al. The path forward for biofuels and biomaterials[J]. Science,2006,311(5760):484-489.
[2]Lamed R,Setter E,Bayer E A. Characterization of a cellulose-binding,cellulase-containing complex in Clostridium thermocellum[J]. Journal of Bacteriology,1983,156(2):828-836.
[3]Maki M,Leung K T,Qin W. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass[J]. International Journal of Biological Sciences,2009,5(5):500-516.
[4]Gilmore S P,Henske J K,Omalley M A. Driving biomass breakdown through engineered cellulosomes[J]. Bioengineered,2015,6(4):204-208.
[5]Shabat S K B,Sasson G,Doronfaigenboim A,et al. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants[J]. Isme Journal,2016,10(12):2958-2972.
[6]Bayer E A,Lamed R,White B A,et al. From cellulosomes to cellulosomics[J]. Chemical Record,2008,8(6):364-377.
[7]Zverlov V V,Klupp M,Krauss J,et al. Mutations in the scaffoldin gene,cipA,of Clostridium thermocellum with impaired cellulosome formation and cellulose hydrolysis:insertions of a new transposable element,IS1447,and implications for cellulase synergism on crystalline cellulose[J]. Biotechnology & Bioengineering,2008,34(8):1092-1097.
[8]Bule P,Alves V D,Leito A,et al. Single-binding mode integration of hemicellulose degrading enzymes via adaptor scaffoldins in Ruminococcus flavefaciens cellulosome[J]. Journal of Biological Chemistry,2016,291(52):26658-26669.
[9]Kosugi A,Murashima K,Tamaru Y,et al. Cell-surface-anchoring role of N-terminal surface layer homology domains of Clostridium cellulovorans EngE[J]. Journal of Bacteriology,2002,184(4):884-888.
[10]Stern J,Moras S,Lamed R,et al. Adaptor scaffoldins:an original strategy for extended designer cellulosomes,inspired from nature[J]. Mbio,2016,7(2):e00083.
[11]Jindou S,Borovok I,Rincon M T,et al. Conservation and divergence in cellulosome architecture between two strains of Ruminococcus flavefaciens[J]. Journal of Bacteriology,2006,188(22):7971-7976.
[12]Artzi L,Morag E,Barak Y,et al. Clostridium clariflavum:key cellulosome players are revealed by proteomic analysis[J]. Mbio,2015,6(3):e00411-e00415.
[13]陈林,王禄山,张怀强. 热纤梭菌高效降解木质纤维素过程的组学研究进展[J]. 微生物学报,2014,54(2):121-128.
[14]Ravachol J,Borne R,Tardif C,et al. Characterization of all family-9 glycoside hydrolases synthesized by the cellulosome-producing bacterium Clostridium cellulolyticum[J]. Journal of Biological Chemistry,2014,289(11):7335-7348.
[15]Kang S,Barak Y,Lamed R,et al. The functional repertoire of prokaryote cellulosomes includes the serpin superfamily of serine proteinase inhibitors[J]. Molecular Microbiology,2006,60(6):1344-1354.
[16]Maly L A,Milana V G,Inna R G,et al. Crystal structure of an uncommon cellulosome-related protein module from Ruminococcus flavefaciens that resembles papain-like cysteine peptidases[J]. PLoS One,2013,8(2):240-242.
[17]Artzi L,Morag E,Shamshoum M,et al. Cellulosomal expansin:functionality and incorporation into the complex[J]. Biotechnology for Biofuels,2016,9(1):1-15.
[18]Gunnoo M,Cazade P A,Galera-Prat A,et al. Nanoscale engineering of designer cellulosomes[J]. Advanced Materials,2016,28(27):5619-5647.
[19]Fontes C M,Gilbert H J. Cellulosomes:highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates[J]. Annual Review of Biochemistry,2010,79(1):655-681.
[20]Cameron K,Najmudin S,Alves V D,et al. Cell-surface attachment of bacterial multienzyme complexes involves highly dynamic protein-protein anchors[J]. Journal of Biological Chemistry,2015,290(21):13578-13590.
[21]Artzi L,Bayer E A,Moras S. Cellulosomes:bacterial nanomachines for dismantling plant polysaccharides[J]. Nature Reviews Microbiology,2016,15(2):83-95.
[22]Smith S P,Bayer E A. Insights into cellulosome assembly and dynamics:from dissection to reconstruction of the supramolecular enzyme complex[J]. Current Opinion in Structural Biology,2013,23(5):686-694.
[23]Ravachol J,de Philip P,Borne R,et al. Mechanisms involved in xyloglucan catabolism by the cellulosome-producing bacterium Ruminiclostridium cellulolyticum[J]. Scientific Reports,2016,6:22770.
[24]Salamaalber O,Jobby M K,Chitayat S,et al. Atypical cohesin-dockerin complex responsible for cell surface attachment of cellulosomal components:binding fidelity,promiscuity,and structural buttresses[J]. Journal of Biological Chemistry,2013,288(23):16827-16838.
[25]Pagès S,Bélach A,Bélach J P,et al. Species-specificity of the cohesin-dockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum:prediction of specificity determinants of the dockerin domain[J]. Proteins Structure Function & Bioinformatics,1997,29(4):517-527.
[26]Nash M A,Smith S P,Fontes C M,et al. Single versus dual-binding conformations in cellulosomal cohesin-dockerin complexes[J]. Current Opinion in Structural Biology,2016,40:89-96.
[27]Boraston A B,Bolam D N,Gilbert H J,et al. Carbohydrate-binding modules:fine-tuning polysaccharide recognition[J]. Biochemical Journal,2004,382(Pt 3):769-781.
[28]Artzi L,Dassa B,Borovok I,et al. Cellulosomics of the cellulolytic thermophile Clostridium clariflavum[J]. Biotechnology for Biofuels,2014,7(1):100.
[29]Simpson P J,Xie H,Bolam D N,et al. The structural basis for the ligand specificity of family 2 carbohydrate-binding modules[J]. Journal of Biological Chemistry,2000,275(52)::41137-41142.
[30]Hammel M,Fierobe H P,Czjzek M,et al. Structural basis of cellulosome efficiency explored by small angle X-ray scattering[J]. Journal of Biological Chemistry,2005,280(46):38562-38568.
[31]Brás J L,Pinheiro B A,Cameron K,et al. Diverse specificity of cellulosome attachment to the bacterial cell surface[J]. Scientific Reports,2016,6:38292.
[32]Xu Q,Bayer E A,Goldman M,et al. Architecture of the Bacteroides cellulosolvens cellulosome:description of a cell surface-anchoring scaffoldin and a family 48 cellulase[J]. Journal of bacteriology,2004,186(4):968-977.
[33]Kosugi A,Amano Y,Murashima K,et al. Hydrophilic domains of scaffolding protein CbpA promote glycosyl hydrolase activity and localization of cellulosomes to the cell surface of Clostridium cellulovorans[J]. Journal of Bacteriology,2004,186(19):6351-6359.
[34]Rincon M T,Cˇepeljnik T,Martin J C,et al. Unconventional mode of attachment of the Ruminococcus flavefaciens cellulosome to the cell surface[J]. Journal of Bacteriology,2005,187(22):7569-7578.
[35]Gold N D,Martin V J. Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis[J]. Journal of Bacteriology,2007,189(19):6787-6795.
[36]Xu J,Bjursell M K,Himrod J,et al. A genomic view of the human-Bacteroides thetaiotaomicron symbiosis[J]. Science,2003,299(5615):2074-2076.
[37]Jami E,Mizrahi I. Similarity of the ruminal bacteria across individual lactating cows[J]. Anaerobe,2012,18(3):338-343.
[38]Yennawar N H,Li L C,Dudzinski D M,et al. Crystal structure and activities of EXPB1 (Zea m 1),a β-expansin and group-1 pollen allergen from maize[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(40):14664-14671.
[39]Kim I J,Lee H J,Choi I G,et al. Synergistic proteins for the enhanced enzymatic hydrolysis of cellulose by cellulase[J]. Applied Microbiology and Biotechnology,2014,98(20):8469-8480.
[40]Bensoussan L,Moras S,Dassa B,et al. Broad phylogeny and functionality of cellulosomal components in the bovine rumen microbiome[J]. Environmental Microbiology,2016,19(1):185-197.
[41]Fierobe H P,Mingardon F,Mechaly A,et al. Action of designer cellulosomes on homogeneous versus complex substrates:controlled incorporation of three distinct enzymes into a defined trifunctional scaffoldin[J]. Journal of Biological Chemistry,2005,280(16):16325-16334.
[42]Davidi L,Moras S,Artzi L,et al. Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome[J]. 2016,113(39):10854-10859.
[43]Moras S,Stern J,Kahn A,et al. Enhancement of cellulosome-mediated deconstruction of cellulose by improving enzyme thermostability[J]. Biotechnology for Biofuels,2016,9(1):164.
[44]Biswas R,Zheng T Y,Olson D G,et al. Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum[J]. Biotechnology for Biofuels,2015,8(1):1-8.
[45]Ou J,Cao Y. Incorporation of Nasutitermes takasagoensis endoglucanase into cell surface-displayed minicellulosomes in Pichia pastoris X33[J]. Journal of Microbiology & Biotechnology,2014,24(9):1178-1188.
[46]Anderson T D,Robson S A,Jiang X W,et al. Assembly of minicellulosomes on the surface of Bacillus subtilis[J]. Applied & Environmental Microbiology,2011,77(14):4849-4858.
[47]Moras S,Shterzer N,Lamed R,et al. A combined cell-consortium approach for lignocellulose degradation by specialized Lactobacillus plantarum cells[J]. Biotechnology for Biofuels,2014,7(1):112.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2017-05-12
基金项目:湖南省战略性新兴产业关键共性技术导向类项目(编号:2015GK1017);湖南省教育厅创新平台开放基金(编号:15K058、15K062);西藏自治区财政专项。
作者简介:朱兆静(1992—),女,河南洛阳人,硕士研究生,主要从事生物化学与分子生物学研究工作。E-mail:1101734478@qq.com。
通信作者:田云,博士,教授,主要从事生物化学与分子生物学研究工作。E-mail:tianyun79616@163.com。
更新日期/Last Update: 2018-10-05