|本期目录/Table of Contents|

[1]陈镜伊,唐婉莹,尹洪斌,等.蓝藻的生消过程对镉污染沉积物的生物有效性[J].江苏农业科学,2018,46(20):320-324.
 Chen Jingyi,et al.Study on bioavailability of growth and death process of cyanobacteria to cadmium contaminated sediments[J].Jiangsu Agricultural Sciences,2018,46(20):320-324.
点击复制

蓝藻的生消过程对镉污染沉积物的生物有效性(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第46卷
期数:
2018年第20期
页码:
320-324
栏目:
资源与环境
出版日期:
2018-10-20

文章信息/Info

Title:
Study on bioavailability of growth and death process of cyanobacteria to cadmium contaminated sediments
作者:
陈镜伊12 唐婉莹1 尹洪斌2 朱瑾灿2
1.南京理工大学化工学院,江苏南京 210094; 2.中国科学院南京地理与湖泊研究所/湖泊与环境国家重点实验室,江苏南京 210008
Author(s):
Chen Jingyiet al
关键词:
蓝藻生消过程沉积物镉污染生物有效性模拟试验理化性质
Keywords:
-
分类号:
X171;X524
DOI:
-
文献标志码:
A
摘要:
蓝藻聚集、死亡分解等一系列过程对沉积物-水界面环境产生较大的影响,进而会影响到沉积物重金属的生物有效性。以镉污染沉积物为对象,研究了蓝藻生长期、死亡期和复氧期过程对沉积物镉释放、形态特征以及毒性的影响。结果表明,蓝藻生长期间会略微降低上覆水中镉的含量,而在死亡期和复氧期会略微增加镉的含量。BCR形态分析表明,蓝藻在生长和复氧期间会造成沉积物中镉的弱酸溶解态及可氧化态含量增加,可还原态含量降低,死亡期间会降低镉的可还原态含量,增加其可氧化态含量。薄膜扩散梯度技术(DGT)研究结果表明蓝藻在生长和复氧期间会明显降低沉积物镉的供应能力。基于酸挥发性硫化物(acid volatile sulfide,简称AVS)与同步可提出金属(simultaneously extracted metals,简称SEM)的归一化分析结果表明,沉积物表层0~1 cm处的生物毒性最大,蓝藻在生长期和复氧期可有效降低生物毒性,但是蓝藻的大量死亡使得沉积物重金属的毒害作用大幅增加。蓝藻生消过程的不同阶段会对沉积物重金属生物有效性产生不同的影响,须要加以关注。
Abstract:
-

参考文献/References:

[1]Sekabira K,Origa H O,Basamba T A,et al. Assessment of heavy metal pollution in the urban stream sediments and its tributaries[J]. International Journal of Environmental Science and Technology,2010,7(3):435-446.
[2]Zahra A,Hashmi M Z,Malik R N,et al. Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah-feeding tributary of the Rawal Lake Reservoir,Pakistan[J]. Science of the Total Environment,2014,470-471:925-933.
[3]Superville P J,Prygiel E,Magnier A,et al. Daily variations of Zn and Pb concentrations in the De u^le River in relation to the resuspension of heavily polluted sediments[J]. Science of the Total Environment,2014,470:600-607.
[4]Yang Y Q,Chen F R,Zhang L,et al. Comprehensice assessment of heavy metal contamination in sediment of the Pearl River Estuary and adjacent shelf[J]. Marine Pollution Bulletin,2012,64(9):1947-1955.
[5]王立硕,毕见霖,王馨慧,等. 非常规水源补给城市河流表层沉积物重金属污染及风险评价[J]. 环境科学学报,2015,35(3):903-910.
[6]杨陈,王沛芳,刘佳佳,等. 太湖沉积物中重金属的垂向分布特征及迁移转化[J]. 农业环境科学学报,2016,35(3):548-557.
[7]王海,王春霞,王子健. 太湖表层沉积物中重金属的形态分析[J]. 环境化学,2002,21(5):430-435.
[8]俞慎,历红波. 沉积物再悬浮-重金属释放机制研究进展[J]. 生态环境学报,2010,19(7):1724-1731.
[9]孔明,董增林,晁建颖,等. 巢湖表层沉积物重金属生物有效性与生态风险评价[J]. 中国环境科学,2015,35(4):1223-1229.
[10]汤雨霖,姜霞,陈春宵. 蓝藻水华对沉积物汞迁移释放的影响[J]. 河南科技,2015(22):73-74.
[11]沈青. 地表水中藻类代谢对pH和含氧量影响分析[J]. 环境科学与技术,2011(增刊2):261-262.
[12]Ni L,Li D,Su L,et al. Effects of algae growth on cadmium remobilization and ecological risk in sediments of Taihu Lake[J]. Chemosphere,2016,151:37-44.
[13]李旻,陆平,曹宇欣,等. 长荡湖底泥重金属污染分布特征[J]. 污染防治技术,2015,28(5):10-12.
[14]蒋豫,刘新,高俊峰,等. 江苏省浅水湖泊表层沉积物中重金属污染特征及其风险评价[J]. 长江流域资源与环境,2015,24(7):1157-1159.
[15]李莹杰,张列宇,吴易雯,等. 江苏省浅水湖泊表层沉积物重金属GIS空间分布及生态风险评价[J]. 环境科学,2016,37(4):1321-1323.
[16]Yin H,Cai Y,Duan H,et al. Use of DGT and conventional methods to predict sediment metal bioavailability to a field inhabitant freshwater snail (Bellamya aeruginosa) from Chinese eutrophic lakes[J]. Journal of Hazardous Materials,2014,264(2):184-194.
[17]张红,吕富,吕林兰,等. 浮游植物叶绿素a含量测定方法的比较及优化[J]. 海洋科学,2012,36(10):1-4.
[18]Chen M,Li X M,Yang Q,et al. Total concentrations and speciation of heavy metals in municipal sludge from Changsha,Zhuzhou and Xiangtan in Middle-South Region of China[J]. Journal of Hazardous Materials,2008,160(2):324-329.
[19]Zhang H,Davison W,Knight B,et al. In situ measurements of solution concentrations and fluxes of trace metals in soils using DGT[J]. Environment Science & Technology,1998,32(5):704-710.
[20]Hsieh Y P,Yang C H. Diffusion methods for the determination of reduced inorganic sulfur species in sediments[J]. Limnology & Oceanography,1989,34(6):1126-1130.
[21]Hong Y S,Kinney K A,Reible D D. Acid volatile sulfides oxidation and metals (Mn,Zn) release upon sediment resuspension:laboratory experiment and model development[J]. Environmental Toxicology and Chemistry,2011,30(3):564-575.
[22]Rickard D,Morse J W. Acid volatile sulfide (AVS)[J]. Marine Chemistry,2005,97(3):141-197.
[23]秦延文,张雷,郑丙辉,等. 太湖表层沉积物重金属赋存形态分析及污染特征[J]. 环境科学,2012,33(12):4291-4299.
[24]Middelboe A L,Hansen P J. High pH in shallow-water macroalgal habitats[J]. Marine Ecology Progress,2007,338(9):107-113.
[25]倪利晓,叶祥,马艳艳,等. 室内模拟水华蓝藻对沉积物中Cd迁移释放的影响[J]. 广东农业科学,2013,40(3):147-150.

相似文献/References:

[1]佘旭东,刘凤军,宋英,等.蓝藻沼液对矮牵牛生长和观赏品质的影响[J].江苏农业科学,2013,41(12):186.
 She Xudong,et al.Effects of blue algae slurry on growth and ornamental quality of petunia[J].Jiangsu Agricultural Sciences,2013,41(20):186.
[2]苏彦平,武秀国,陈修报,等.背角无齿蚌养殖池塘中发生的假鱼腥藻隐形水华[J].江苏农业科学,2015,43(02):233.
 Su Yanping,et al.Preliminary study on Pseudanabaena limnetica invisible bloom in Anadonta woodiana Lea. pond[J].Jiangsu Agricultural Sciences,2015,43(20):233.
[3]李文利,傅以钢,刘征宇,等.基于溶藻效果的溶藻细菌A21培养基成分优化[J].江苏农业科学,2016,44(12):516.
 Li Wenli,et al.Optimization of medium component of dissolve algae bacteria A21 based on algae effect[J].Jiangsu Agricultural Sciences,2016,44(20):516.

备注/Memo

备注/Memo:
收稿日期:2017-06-01
基金项目:国家自然科学基金(编号:41371479);江苏省社会发展项目(编号:BE2016811)。
作者简介:陈镜伊(1992—),女,江苏无锡人,硕士,主要从事污染水体中重金属的吸附和控制研究。E-mail:2275281005@qq.com。
通信作者:唐婉莹,博士,副教授,主要从事仪器分析研究。E-mail:wytang@njust.edu.cn。
更新日期/Last Update: 2018-10-20