|本期目录/Table of Contents|

[1]李夏莹,陈锐,刘鹏程,等.转基因高通量检测技术研究进展[J].江苏农业科学,2019,47(01):27-30.
 Li Xiaying,et al.Research progress of high throughput testing technologies for genetically modified organisms[J].Jiangsu Agricultural Sciences,2019,47(01):27-30.
点击复制

转基因高通量检测技术研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第47卷
期数:
2019年第01期
页码:
27-30
栏目:
专论与综述
出版日期:
2019-01-05

文章信息/Info

Title:
Research progress of high throughput testing technologies for genetically modified organisms
作者:
李夏莹1 陈锐2 刘鹏程1 王顥潜1 梁晋刚1 张旭冬1 李文龙1 张秀杰1
1.农业农村部科技发展中心,北京 100176; 2.天津市农业质量标准与检测技术研究所,天津 300192
Author(s):
Li Xiayinget al
关键词:
转基因高通量芯片DNA测序
Keywords:
-
分类号:
S188
DOI:
-
文献标志码:
A
摘要:
转基因技术在农业领域的应用与发展日新月异,转基因检测的需求日趋多样化、复杂化,现有的转基因检测技术体系已经很难满足转基因产业快速发展的需要。近年来,以PCR阵列技术、芯片技术、DNA测序技术为代表的转基因高通量检测技术发展迅猛。本文就这一领域的研究进展作一简要概述。
Abstract:
-

参考文献/References:

[1]ISAAA. Global status of commercialized Biotech/GM crops:2016[J]. ISAAA Brief,2016(52).
[2]Mano J,Harada M,Takabatake R,et al. Comprehensive GMO detection using real-time PCR array:single-laboratory validation[J]. Journal of AOAC International,2012,95(2):508-516.
[3]Cottenet G,Blancpain C,Sonnard V,et al. Development and validation of a multiplex real-time PCR method to simultaneously detect 47 targets for the identification of genetically modified organisms[J]. Analytical and Bioanalytical Chemistry,2013,405(21):6831-6844.
[4]Rosa S F,Gatto F,Angers-Loustau A,et al. Development and applicability of a ready-to-use PCR system for GMO screening[J]. Food Chemistry,2016,201(1):110-119.
[5]Querci M,Foti N,Bogni A,et al. Real-time PCR-based ready-to-use multi-target analytical system for GMO detection[J]. Food Analytical Methods,2009,2(4):325-336.
[6]Kluga L,Bulcke M V D,Folloni S,et al. A ready-to-use multi-target analytical system for GM soy and maize detection for enforcement laboratories:INTECH Open Access Publisher[J]. Soybean-Applications,2011,3(4):225-240
[7]Kluga L,Folloni S,Bulcke M V D,et al. Applicability of the “real-time PCR-based ready-to-use multi-target analytical system for GMO detection” in processed maize matrices[J]. European Food Research and Technology,2012,234(1):109-118.
[8]Leimanis S,Hernandez M,Fernandez S,et al. A microarray-based detection system for genetically modified (GM) food ingredients[J]. Plant Molecular Biology,2006,61(1/2):123-139.
[9]Tengs T,Kristoffersen AB,Berdal KG,et al. Microarray-based method for detection of unknown genetic modifications[J]. BMC biotechnology,2007,7(1):91.
[10]Hamels S,Leimanis S,Mazzara M,et al. Microarray method for the screening of EU approved GMOs by identification of their genetic elements[R/OL]. Eurpean Commission:Joint Research Centre. Italia,2007[2017-08-20]. http://biotech jrc it/home/docs htm.
[11]Kim J H,Kim S Y,Lee H,et al. An event-specific DNA microarray to identify genetically modified organisms in processed foods[J]. Journal of Agricultural and Food Chemistry,2010,58(10):6018-6026.
[12]Lee S H. Screening DNA chip and event‐specific multiplex PCR detection methods for biotech crops[J]. Journal of the Science of Food and Agriculture,2014,94(14):2856-2862.
[13]Turkec A,Lucas S J,Karacanli B,et al. Assessment of a direct hybridization microarray strategy for comprehensive monitoring of genetically modified organisms(GMOs)[J]. Food Chemistry,2016,194(3):399-409.
[14]Meyer M,Stenzel U,Hofreiter M. Parallel tagged sequencing on the 454 platform[J]. Nature Protocols,2008,3(2):267-278.
[15]Quail M A,Kozarewa I,Smith F,et al. A large genome centers improvements to the Illumina sequencing system[J]. Nature Methods,2008,5(12):1005-1010.
[16]Turcatti G,Romieu A,Fedurco M,et al. A new class of cleavable fluorescent nucleotides:synthesis and optimization as reversible terminators for DNA sequencing by synthesis[J]. Nucleic Acids Research,2008,36(4):26-40.
[17]Housby J N,Southern E M. Fidelity of DNA ligation:a novel experimental approach based on the polymerisation of libraries of oligonucleotides[J]. Nucleic Acids Res,1998,26(18):4259-4266.
[18]Mardis E R. The impact of next-generation sequencing technology on genetics[J]. Trends in Genetics,2008,24(3):133-141.
[19]Schuster S C. Next-generation sequencing transforms todays biology[J]. Nature Methods,2008,5(1):16-18.
[20]Shendure J,Ji H. Next-generation DNA sequencing[J]. Nature Biotechnology,2008,26(10):1135-1145.
[21]Butenko M A,Jon B,Arne H J,et al. Characterization of unknown genetic modifications using high throughput sequencing and computational subtraction[J]. BMC Biotechnology,2009,9(1):87.
[22]Yang L,Wang C,Holst-Jensen A,et al. Characterization of GM events by insert knowledge adapted re-sequencing approaches[J]. Scientific Reports,2013,3(5):115-131.
[23]Zhang R,Yin Y,Zhang Y,et al. Molecular characterization of transgene integration by next-generation sequencing in transgenic cattle[J]. PLoS One,2012,7(11):50348-50368.
[24]Barbau-piednoir E,de Keersmaecker S C,Delvoye M,et al. Use of next generation sequencing data to develop a qPCR method for specific detection of EU-unauthorized genetically modified Bacillus subtilis overproducing riboflavin[J]. BMC Biotechnology,2015,15(1):103.
[25]Fritsch L,Fischer R,Wambach C,et al. Next-generation sequencing is a robust strategy for the high-throughput detection of zygosity in transgenic maize[J]. Transgenic Research,2015,24(4):615-623.
[26]Sahebi M,Hanafi M M,Azizi P,et al. Suppression subtractive hybridization versus next-generation sequencing in plant genetic engineering:challenges and perspectives[J]. Molecular Biotechnology,2015,57(10):880-903.
[27]Willems S,Fraiture M A,Deforce D,et al. Statistical framework for detection of genetically modified organisms based on next generation sequencing[J]. Food Chemistry,2016,192:788-798.
[28]Metzker M L. Sequencing technologies - the next generation[J]. Nature Reviews Genetics,2010,11(1):31-46.
[29]Ng S B,Turner E H,Robertson P D,et al. Targeted capture and massively parallel sequencing of 12 human exomes[J]. Nature,2009,461(7261):272-306.
[30]Wang X,Elling A A,Li X,et al. Genome-wide and organ-specific landscapes of epigenetic modifications and their relationships to mRNA and small RNA transcriptomes in maize[J]. The Plant Cell Online,2009,21(4):1053-1069.
[31]German M A,Pillay M,Jeong D H,et al. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends[J]. Nature Biotechnology,2008,26(8):941-946.
[32]Li N,Ye M,Li Y,et al. Whole genome DNA methylation analysis based on high throughput sequencing technology[J]. Methods,2010,52(3):203-212.
[33]Baird N A,Etter P D,Atwood T S,et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers[J]. PLoS One,2008,3(10):e3376.
[34]Volpicella M,Leoni C,Costanza A,et al. Genome walking by next generation sequencing approaches[J]. Biology,2012,1(3):495-507.
[35]Gabriel R,Eckenberg R,Paruzynski A,et al. Comprehensive genomic access to vector integration in clinical gene therapy[J]. Nature Medicine,2009,15(12):1431-1456.
[36]Gawronski J D,Wong S M,Giannoukos G,et al. Tracking insertion mutants within libraries by deep sequencing and a genome-wide screen for Haemophilus genes required in the lung[J]. Proceedings of the National Academy of Sciences,2009,106(38):16422-16467.
[37]Spalinskas R,van den Bulcke M,van den Eede G,et al. LT-RADE:an efficient user-friendly genome walking method applied to the molecular characterization of the insertion site of genetically modified maize MON810 and rice LLRICE62[J]. Food Analytical Methods,2013,6(2):705-755.
[38]Schmidt M,Zickler P,Hoffmann G,et al. Polyclonal long-term repopulating stem cell clones in a primate model[J]. Blood,2002,100(8):2737-2774.
[39]Tan G,Gao Y,Shi M,et al. SiteFinding-PCR:a simple and efficient PCR method for chromosome walking[J]. Nucleic Acids research,2005,33(13):122-145.
[40]Thirulogachandar V,Pandey P,Vaishnavi C S,et al. An affinity-based genome walking method to find transgene integration loci in transgenic genome[J]. Analytical Biochemistry,2011,416(2):196-201.
[41]Xu W,Shang Y,Zhu P,et al. Randomly broken fragment PCR with 5′ end-directed adaptor for genome walking[J]. Scientific Reports,2013,34(15):115-135.
[42]Trinh Q,Xu W,Shi H,et al. An AT linker adapter polymerase chain reaction method for chromosome walking without restriction site cloning bias[J]. Analytical Biochemistry,2012,425(1):62-85.
[43]Trinh Q,Shi H,Xu W,et al. Loop‐linker PCR:an advanced PCR technique for genome walking[J]. IUBMB Life,2012,64(10):841-845.
[44]Kanizay L B,Jacobs T B,Gillespie K,et al. Parrott WA. HtStuf:High-throughput sequencing to locate unknown DNA junction fragments[J]. The Plant Genome,2015,8(1):67-98
[45]Lepage E ′,Zampini E ′,Boyle B,et al. Time-and cost-efficient identification of T-DNA insertion sites through targeted genomic sequencing[J]. PLoS One,2013,8(8):70912-70935.
[46]Zastrow-Hayes G M,Lin H,Sigmund A L,et al. Southern-by-sequencing:a robust screening approach for molecular characterization of genetically modified crops[J]. The Plant Genome,2015,8(1):25-49.

相似文献/References:

[1]陈旭升,狄佳春,赵亮.转基因抗虫杂交棉“星杂棉168”品种特性分析[J].江苏农业科学,2014,42(11):126.
 Chen Xusheng,et al().Characteristics of transgenic hybrid cotton cultivar “Xingzamian 168” with insect-resistance[J].Jiangsu Agricultural Sciences,2014,42(01):126.
[2]张维,高朝宝,尹秀,等.棉蚜V-ATPase-A基因RNAi载体的构建及其在转基因拟南芥的基因表达[J].江苏农业科学,2013,41(10):17.
 Zhang Wei,et al.RNAi vector construction of V-ATPase-A gene from Aphis gossypii and its expression in transgenic Arabidopsis thaliana[J].Jiangsu Agricultural Sciences,2013,41(01):17.
[3]田富强.产业化带动产学研合作转基因技术创新[J].江苏农业科学,2013,41(11):450.
 Tian Fuqiang.Production-education-research cooperative innovation in transgenic technology driven by industrialization[J].Jiangsu Agricultural Sciences,2013,41(01):450.
[4]高莉.专利法视阈下转基因农产品安全保障的三重维度[J].江苏农业科学,2013,41(12):439.
 Gao Li.Triple dimensions of tansgenic sagety for agricultural products under the perspective of patent law[J].Jiangsu Agricultural Sciences,2013,41(01):439.
[5]奈婕菲,程玉祥.一个杨树GDSL基因组织表达的特性及其在拟南芥异源的表达[J].江苏农业科学,2014,42(03):16.
 Nai Jiefei,et al.Tissue expression of a poplar GDSL gene and its heterologous expression analysis in Arabidopsis thaliana[J].Jiangsu Agricultural Sciences,2014,42(01):16.
[6]蔡立旺,施庆华,高进,等.转基因抗虫杂交棉苏棉29栽培技术规程[J].江苏农业科学,2015,43(05):70.
 Cai Liwang,et al.Cultivation technology regulation of transgenic hybrid cotton cultivar “Sumian 29” with insect resistance[J].Jiangsu Agricultural Sciences,2015,43(01):70.
[7]蔡立旺,潘群斌,施庆华,等.转基因杂交棉花新品种苏棉29的选育与栽培技术[J].江苏农业科学,2014,42(07):104.
 Cai Liwang,et al.Breeding and cultivation techniques of a new transgenic cotton hybrid “Sumian 29”[J].Jiangsu Agricultural Sciences,2014,42(01):104.
[8]焦展,安胜军,邵铁梅,等.油葵嫁接及其在离体培养和转基因中的应用[J].江苏农业科学,2016,44(07):143.
 Jiao Zhan,et al.Grafting techniques of oil sunflower (Helianthus annuus L.) and its application in tissue culture and gene transformation[J].Jiangsu Agricultural Sciences,2016,44(01):143.
[9]马玮超,杜茂林,谷亚楠,等.高通量法选育果胶酶高产菌株[J].江苏农业科学,2016,44(07):513.
 Ma Weichao,et al.Screening of pectinase high-producing strains by high-throughput method[J].Jiangsu Agricultural Sciences,2016,44(01):513.
[10]阮先乐,张杰.转基因成分的检测方法综述[J].江苏农业科学,2017,45(05):12.
 Ruan Xianle,et al.Detection methods of genetically modified components:a review[J].Jiangsu Agricultural Sciences,2017,45(01):12.

备注/Memo

备注/Memo:
收稿日期:2017-09-07
基金项目:国家科技重大专项(编号:2016ZX08012003)。
作者简介:李夏莹(1986—),女,云南玉溪人,博士,农艺师,主要从事转基因检测技术研究。E-mail:esmacloed006@163.com。
通信作者:张秀杰,硕士,副研究员,主要从事转基因检测技术研究。E-mail:zhxj7410@sina.com。
更新日期/Last Update: 2019-01-05