|本期目录/Table of Contents|

[1]杨红霞,陈俊良,刘崴.镉对植物的毒害及植物解毒机制研究进展[J].江苏农业科学,2019,47(02):1-8.
 Yang Hongxia,et al.Research progress on cadmium toxicity and detoxification mechanism in plants[J].Jiangsu Agricultural Sciences,2019,47(02):1-8.
点击复制

镉对植物的毒害及植物解毒机制研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第47卷
期数:
2019年第02期
页码:
1-8
栏目:
专论与综述
出版日期:
2019-01-20

文章信息/Info

Title:
Research progress on cadmium toxicity and detoxification mechanism in plants
作者:
杨红霞 陈俊良 刘崴
国家地质实验测试中心,北京 100037
Author(s):
Yang Hongxiaet al
关键词:
毒害解毒机制
Keywords:
-
分类号:
Q948.12;X173
DOI:
-
文献标志码:
A
摘要:
综述近年来镉对植物的毒害及植物解毒机制的相关研究成果。主要从植物生长、光合作用、植物酶活性、植物细胞分裂等方面阐述镉的毒害机制,并从植物对镉的吸收和转运、耐受机制、影响因素等方面讨论植物的解毒机制。
Abstract:
-

参考文献/References:

[1]Sneller F E C,Noordover E C M,Ten Bookum W M,et al. Quantitative relationship between phytochelatin accumulation and growth inhibition during prolonged exposure to cadmium in Silene vulgaris[J]. Ecotoxicology,1999,8(3):167-175.
[2]Lin L,Zhou W H,Dai H X,et al. Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice[J]. Journal of Hazardous Materials,2012,235/236:343-351.
[3]Lasat M M. Phytoextraction of toxic metals:a review of biological mechanisms[J]. Journal of Environmental Quality,2002,31(1):109-120.
[4]Mishra S,Srivastava S,Tripathi R D,et al. Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation[J]. Chemosphere,2006,65(6):1027-1039.
[5]Seth C S,Chaturvedi P K,Misra V. The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L.[J]. Ecotoxicology and Environmental Safety,2008,71(1):76-85.
[6]宋榕洁,唐艳葵,陈玲,等. 超富集植物对镉、砷的累积特性及耐性机制研究进展[J]. 江苏农业科学,2015,43(6):6-10.
[7]何俊瑜,王阳阳,任艳芳,等. 镉胁迫对不同水稻品种幼苗根系形态和生理特性的影响[J]. 生态环境学报,2009,18(5):1863-1868.
[8]王明新,陈亚慧,白雪,等. 孔雀草对镉胁迫的响应及其积累与分布特征[J]. 环境化学,2014,33(11):1878-1884.
[9]郭智,王涛,奥岩松. 镉对龙葵幼苗生长和生理指标的影响[J]. 农业环境科学学报,2009,28(4):755-760.
[10]宋阿琳,李萍,李兆君,等. 镉胁迫下两种不同小白菜的生长、镉吸收及其亚细胞分布特征[J]. 环境化学,2011,30(6):1075-1080.
[11]张军,束文圣. 植物对重金属镉的耐受机制[J]. 植物生理与分子生物学学报,2006,32(1):1-8.
[12]张利红,李培军,李雪梅. 镉胁迫对小麦幼苗生长及生理特性的影响[J]. 生态学杂志等,2005,23(4):69-71.
[13]张丽,赵忠涛,李祖祥,等. 土壤中重金属镉污染对润草1号生理生化指标的影响[J]. 湖北农业科学,2016,55(19):4952-4955.
[14]毕君,郭伟珍,高红真. 9种植物对镉的忍耐和富集能力研究[J]. 中国农学通报,2013,29(34):12-16.
[15]张帆,万雪琴,翟晶. 镉处理下增施氮对杨树叶绿素合成和叶绿体超微结构的影响[J]. 核农学报,2014,28(3):485-491.
[16]陈良,隆小华,郑晓涛,等. 镉胁迫下两种菊芋幼苗的光合作用特征及镉吸收转运差异的研究[J]. 草业学报,2011,20(6):60-67.
[17]滕振宁,方宝华,刘洋,等. 镉对不同品种水稻光合作用的影响[J]. 中国农业气象,2016,37(5):538-544.
[18]张媛华. Cd胁迫对绿豆幼苗生长、光合作用及微量元素代谢的影响[J]. 东北农业科学,2016,41(1):35-37.
[19]张永平,沈若刚,姚雪琴,等. 镉胁迫对甜瓜幼苗抗氧化酶活性和光合作用的影响[J]. 中国农学通报,2015,31(34):82-88.
[20]Zhang F Q,Shi W Y,Jin Z X,et al. Response of antioxidative enzymes in cucumber chloroplasts to cadmium toxicity[J]. Journal of Plant Nutrition,2003,26(9):1779-1788.
[21]黄辉,李升,郭娇丽. 镉胁迫对玉米幼苗抗氧化系统及光合作用的影响[J]. 农业环境科学学报,2010,29(2):211-215.
[22]陈朝明,龚惠群,王凯荣. Cd对桑叶品质生理生化特性的影响及其机理研究[J]. 应用生态学报,1996,7(4):417-423.
[23]张金彪,黄维南. 镉对植物的生理生态效应的研究进展[J]. 生态学报,2000,20(3):514-523.
[24]杨居荣. 镉、铜对植物细胞的毒性及元素吸收特性的影响[J]. 环境科学学报,1991,11(3):381-386.
[25]任安芝,高玉葆,刘爽. 铬、镉、铅胁迫对青菜叶片几种生理生化指标的影响[J]. 应用与环境生物学报,2000,6(2):112-116.
[26]周希琴,莫灿坤. 植物重金属胁迫及其抗氧化系统[J]. 新疆教育学院学报,2003,19(2):103-108.
[27]方继宇,贾永霞,张春梅,等. 马缨丹对镉的生长响应及其富集、转运和亚细胞分布特点研究[J]. 生态环境学报,2014,23(10):1677-1682.
[28]彭鸣,王焕校,吴玉树. 镉、铅诱导的玉米(Zea mays L.)幼苗细胞超微结构的变化[J]. 中国环境科学,1991,11(6):426-431.
[29]Roderer G. On the toxic effects of tetraethyl lead and its derivatives on the chrysophyte Poterioochromonas malhamensis-V. electron microscopical studies[J]. Environmental and Experimental Botany,1984,24(1):17-30.
[30]Vallee B L,Ulmer D D. Biochemical effects of mercury,cadmium,and lead[J]. Annual Review of Biochemistry,1972,41(1):91-128.
[31]杨金凤,卜玉山,邓红艳. 镉、铅及其复合污染对油菜部分生理指标的影响[J]. 生态学杂志,2009,28(7):1284-1287.
[32]陈愚,任久长,蔡晓明. 镉对沉水植物硝酸还原酶和超氧化物歧化酶活性的影响[J]. 环境科学学报,1998,18(3):313-317.
[33]赵天宏,刘玉莲,曹莹,等. 镉胁迫下不同形态氮肥对春小麦体内含氮物质的影响[J]. 华北农学报,2010,25(5):177-181.
[34]Bennett L E,Burkhead J L,Hale K L,et al. Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings[J]. Journal of Environmental Quality,2003,32(2):432-440.
[35]张玉秀,于飞,张媛雅,等. 植物对重金属镉的吸收和累积机制[J]. 中国生态农业学报,2008,16(5):1317-1321.
[36]Misra V,Tiwari A,Shukla B,et al. Effects of soil amendments on the bioavailability of heavy metals from zinc mine tailings[J]. Environmental Monitoring Assessment,2009,155(1/2/3/4):467-475.
[37]Wu L H,Luo Y M,Xing X R. EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk[J]. Agriculture,Ecosystems and Environment,2004,102(3):307-318.
[38]Hauser L,Tandy S,Schulin R,et al. Column extraction of heavy metals from soils using the biodegradable chelating agent EDDS[J]. Environmental Science Technology,2005,39(17):6819-6824.
[39]王晓娟,王文斌,杨龙,等. 重金属镉(Cd)在植物体内的转运途径及其调控机制[J]. 生态学报,2015,35(23):7921-7929.
[40]赵艳玲,张长波,刘仲齐. 植物根系细胞抑制镉转运过程的研究进展[J]. 农业资源与环境学报,2016,33(3):209-213.
[41]Zhao F J,Hamon R E,Lombi E,et al. Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens[J]. Journal of Experimental Botany,2002,53(368):535-543.
[42]Salt D E,Wagner G J. Cadmium transport across tonoplast of vesicles from oat roots[J]. The Journal of Biological Chemistry,1993,268(17):12297-12302.
[43]Clemens S.Toxic metal accumulation,responses to exposure and mechanisms of tolerance in plants[J]. Biochimie,2006,88(11):1707-1719.
[44]杨菲,唐明凤,朱玉兴. 水稻对镉的吸收和转运的分子机理[J]. 杂交水稻,2015,30(3):2-8.
[45]Merkl N,Schultze-Kraft R,Infante C. Phytoremediation in the tropics- inuence of heavy crude oil on root morphological characteristics of graminoids[J]. Environmental Pollution,2005,138(1):86-91.
[46]郝玉娇,朱启红. 植物富集重金属的影响因素研究[J]. 重庆文理学院学报(自然科学版),2010,29(4):45-47.
[47]Thomine S,Wang R,Ward J M,et al. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes[J]. Proceedings of the National Academy of Sciences of the United States of America,2000,97(9):4991-4996.
[48]Van Aken B. Transgenic plants for enhanced phytoremediation of toxic explosives[J]. Current Opinion in Biotechnology,2009,20(2):231-236.
[49]Cohen C K,Fox T C,Garvin D E,et al. The role of iron-deciency stress responses in stimulating heavy-metal transport in plants[J]. Plant Physiology,1998,116(3):1063-1072.
[50]Colangelo E P,Guerinot M L. Put the metal to the petal:metal uptake and transport throughout plants[J]. Current Opinion in Plant Biology,2006,9(3):322-330.
[51]Eide D,Broderius M,Fett J,et al. A novel iron-regulated metal transporter from plants identied by functional expression in yeast[J]. Proceedings of the National Academy of Sciences of the United States of America,1996,93(11):5624-5628.
[52]Pence N S,Larsen P B,Ebbs S D,et al. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens[J]. Proceedings of the National Academy of Sciences of the United States of America,2000,97(9):4956-4960.
[53]Montanini B,Blaudez D,Jeandroz S,et al. Phylogenetic and functional analysis of the cation diffusion facilitator(CDF) family:improved signature and prediction of substrate specicity[J]. BMC Genomics,2007,8:107.
[54]Antosiewicz D M,Sirko A,Sowi′nski P. Trace element transport in plants[M]// Prasad M N V. Trace elements as contaminants and nutrients. Hoboken:John Wiley& Sons Inc,2008:413-448.
[55]Curie C,Alonso J M,Jean M L,et al. Involvement of NRAMP1 from Arabidopsis thaliana in iron transport[J]. The Biochemical Journal,2000,347(3):749-755.
[56]Thornton J D,Eisenreich S J. Impact of land-use on the acid and trace element composition of precipitation in the North Central U.S.[J]. Atmospheric Environment,1982,16(8):1945-1955.
[57]Williams L E,Pittman J K,Hall J L. Emerging mechanisms for heavy metal transport in plants[J]. Biochimica et Biophysica Acta,2000,1465(1/2):104-126.
[58]Salt D E,Prince R C,Pickering I J,et al. Mechanisms of cadmium mobility and accumulation in Indian Mustard[J]. Plant Physiology,1995,109(4):1427-1433.
[59]孙涛,张玉秀,柴团耀. 印度芥菜(Brassica juncea L.)重金属耐性机理研究进展[J]. 中国生态农业学报,2011,19(1):226-234.
[60]苏徳纯,黄焕忠,张福锁. 印度芥菜对土壤中难溶态Cd的吸收及活化[J]. 中国环境科学,2002,22(4):342-345.
[61]熊愈辉,杨肖娥. 镉对植物毒害与植物耐镉机理研究进展[J]. 安徽农业科学,2006,34(13):2969-2971.
[62]Pollard A J,Powell K D,Harper F A,et al. The genetic basis of metal hyperaccumulation in plants[J]. Critical Reviews in Plant Sciences,2002,21(6):539-566.
[63]Ma J F,Hiradate S,Matsumoto H. High aluminum resistance in buckwheat Ⅱ. Oxalic acid detoxifies aluminum internally[J]. Plant Physiology,1998,117(3):753-759.
[64]Hall J L. Cellular mechanism for heavy metal detoxification and tolerance[J]. Journal of Experimental Botany,2002,53(366):1-11.
[65]薛永,王苑螈,姚泉洪,等. 植物对土壤重金属镉抗性的研究进展[J]. 生态环境学报,2014,23(3):528-534.
[66]Vernoux T,Wilson R C,Seeley K A,et al. The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development[J]. The Plant Cell,2000,12(1):97-109.
[67]Foyer C H,Noctor G. Redox homeostasis and antioxidant signaling:a metabolic interface between stress perception and physiological responses[J]. Plant Cell,2005,17(7):1866-1875.
[68]Rausch T,Gromes R,Liedschulte V,et al. Novel insight into the regulation of GSH biosynthesis in higher plants[J]. Plant Biology,2007,9(5):565-572.
[69]Hasan M K,Liu C C,Wang F N,et al.Glutathione-mediated regulation of nitric oxide,S-nitrosothiol and redox homeostasis confers cadmium tolerance by inducing transcription factors and stress response genes in tomato[J]. Chemosphere,2016,161:536-545.
[70]Yazaki K. ABC transporters involved in the transport of plant secondary metabolites[J]. FEBS Letters,2006,580(4):1183-1191.
[71]单长卷,韩蕊莲,梁宗锁. 黄土高原冰草叶片抗坏血酸和谷胱甘肽合成及循环代谢对干旱胁迫的生理响应[J]. 植物生态学报,2011,35(6):653-662.
[72]Freeman J L,Persans M W,Nieman K,et al. Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators[J]. Plant Cell,2004,16(8):2176-2191.
[73]Cobbett C S,May M J,Howden R,et al. The glutathione-deficient,cadmium-sensitive mutants,cad2-1,of Arabidopsis thaliana is deficient in γ-glutamylcysteine synthetase[J]. The Plant Journal,1998,16(1):73-78.
[74]Noctor G,Arisi A C M,Jouanin L,et al. Manipulation of glutathione and amino acid biosynthesis in the chloroplast[J]. Plant Physiology,1998,118(2):471-482.
[75]Cobbett C S.Phytochelatins and their roles in heavy metal detoxification[J]. Plant Physiology,2000,123(3):825-832.
[76]Eeva T,Lehikoinen E. Local survival rates of the pied flycatchers (Ficedula hypoleuca) and the great tits (Parus major) in an air pollution gradient[J]. Ecoscience,1998,5(1):46-50.
[77]Dauwe T,Janssens E,Kempenaers B,et al. The effect of heavy metal exposure on egg size,eggshell thickness and the number of spermatozoa in blue tit Parus caeruleus eggs[J]. Environmental Pollution,2004,129(1):125-129.
[78]Dauwe T,Janssens E,Eens M. Effects of heavy metal exposure on the condition and health of adult great tits(Parus major)[J]. Environmental Pollution,2006,140(1):71-78.
[79]常团结,朱祯. 植物金属硫蛋白研究进展(一)——植物MT的分类、特征及其基因结构[J]. 生物技术通报,2002(3):5-10.[JP]
[80]张娟萍,张喜凤. 镉污染对人体危害的初探[J]. 价值工程,2013,25:282-283.
[81]卞建春,郭恒杰,王捍东,等. 镉暴露家兔睾丸和肝脏中小分子金属结合蛋白的分离与比较[J]. 中国农业科学,2009,42(3):1091-1099.
[82]张海燕,徐文忠,戴文韬,等. 大蒜金属硫蛋白家族新成员AsMT2b在镉离子胁迫下的功能分析[J]. 科学通报,2006,51(3):309-315.
[83]Grispen V M J,Irtelli B,Hakvoort H W J,et al. Expression of the Arabidopsis metallothionein 2b enhances arsenite sensitivity and root to shoot translocation in tobacco[J]. Environmental and Experimental Botany,2009,66(1):69-73.
[84]Guo W J,Meetam M,Goldsbrough P B. Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance[J]. Plant Physiology,2008(146):1697-1706.
[85]蔡保松,雷梅,陈同斌,等. 植物螯合肽及其在抗重金属胁迫中的作用[J]. 生态学报,2003,23(10):2125-2132.
[86]Rauser W E. Phytochelatins and related peptides:structure,biosynthesis,and function[J]. Plant Physiology,1995,109(4):1141-1149.
[87]Rauser W E. Structure and function of metal chelators produced by plants:the case for organic acids,amino acids,phytin,and metallothioneins[J]. Cell Biochemistry and Biophysics,1999,31(1):19-48.
[88]Grill E,Winnacker E L,Zenk M H. Phytochelatins:the principal heavy-metal complexing peptides of higher plants[J]. Science,1985,230(4726):674-676.
[89]Wagner G J. Accumulation of cadmium in crop plants and its consequences to human health[J]. Advances in Agronomy,1993(51):173-212.
[90]Howden R,Goldsbrough P B,Andersen C R,et al. Cadmium-sensitive,cad1 mutants of Arabidopsis thaliana are phytochelatin deficient[J]. Plant Physiology,1995,107:1059-1066.
[91]张妍茹,佟少明,侯和胜. 植物螯合肽合成酶的催化机制研究进展[J]. 天津农业科学,2016,22(2):27-30.
[92]Arif T J,Mudsser A,Arif A,et al. Prospects for exploiting bacteria for bioremediation of metal pollution[J]. Environmental Science and Technology,2014,44(5):519-560.
[93]Salt D E,Rauser W E. MgATP-dependent transport of phytochelatin across the tonoplast of oat roots[J]. Plant Physiology,1995,107(4):1293-1301.
[94]Vogeli-Lange R,Wagner G J. Relationship between cadmium,glutathione and cadmium-binding peptides(phytochelatins) in leaves of intact tobacco seedlings[J]. Plant Science,1996,114(1):11-18.
[95]Kneer R,Zenk M H. Phytochelatins protect plant enzymes from heavy metal poisoning[J]. Phytochemistry,1992,31(8):2663-2667.
[96]Krotz R M,Evangelou B P,Wagner G J. Relationships between cadmium,zinc,Cd-peptide,and organic acid in tobacco suspension cells[J]. Plant Physiology,1989,91(2):780-787.
[97]杨红霞,张惠娟,高津旭,等. 胁迫时间和胁迫浓度对超积累植物印度芥菜细胞中镉分布的影响[J]. 岩矿测试,2014,33(5):723-729.
[98]Leita L,Nobili M D,Cesco S. Analysis of intercellular cadmium forms in roots and leaves of bush bean[J]. Journal of Plant Nutrition,1996,19(3/4):527-533.
[99]闫研,李建平,赵志国,等. 超富集植物对重金属耐受和富集机制的研究进展[J]. 广西植物,2008,28(4):505-510.
[100]Seth C S,Chaturvedi P K,Misra V. Toxic effect of arsenate and cadmium alone and in combination on giant duckweed (Spirodela polyrrhiza L.) in response to its accumulation[J]. Environmental Toxicology,2007,22(6):539-549.
[101]Hou W H,Chen X,Song G L,et al. Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor)[J]. Plant Physiology and Biochemistry,2007,45(1):62-69.
[102]李洋,于丽杰,金晓霞. 植物重金属胁迫耐受机制[J]. 中国生物工程杂志,2015,35(9):94-104.
[103]Willekens H,Chamnongpol S,Davey M,et al. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants[J]. The EMBO Journal,1997,16(16):4806-4816.
[104]Iannelli M A,PietriniI F,Flore L,et al. Antioxidant responseto cadmium in Phragmites australis plants[J]. Plant Physiology and Biochemistry,2002,40(11):977-982.
[105]Allen R D. Dissection of oxidative stress tolerance using transgenic plants[J]. Plant Physiology,1995,107(4):1049-1054.
[106]Karpinski S,Escobar C,Karpinska B,et al. Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress[J]. Plant Cell,1997(9):627-640.
[107]Rivetta A,Negrini N,Cocucci M. Involvement of Ca2+-calmodulin in Cd2+ toxicity during the early phases of radish (Raphanus sativus L.) seed germination[J]. Plant,Cell & Environment,1997,20(5):600-608.
[108]Costa G,Michaut J C,Guckert A. Amino acids exuded from axenic roots of lettuce and white lupin seedlings exposed to different cadmium concentrations[J]. Journal of Plant Nutrition,1997,20(7/8):883-900.
[109]张正庆,鲍美娥,陈嘉斌,等. 植物对重金属的耐性机制[J]. 甘肃科技,2013,29(5):69-71.
[110]王美娥,周启星,张利华. 污染物在根-土界面的化学行为与生态效应[J]. 应用生态学报,2003,14(11):2067-2071.
[111]刘明浩,陈光辉,王悦. 植物耐镉机制研究进展[J]. 作物研究,2015,29(1):101-105.
[112]Sabehat A,Lurie S,Weiss D. Expression of small heat-shock proteins at low temperatures:a possible role in protecting against chilling injuries[J]. Plant Physiology,1998,117(2):651-658.
[113]荆红梅,郑海雷,赵中秋,等. 植物对镉胁迫响应的研究进展[J]. 生态学报,2001,21(12):2125-2130.
[114]Schffl F,Key J L. An analysis of mRNAs for a group of heat shock proteins of soybean using cloned cDNAs[J]. Journal of Molecular and Applied Genetics,1982,1(4):301-314.
[115]Edelman L,Czarnecka E,Key J L. Induction and accumulation of heat shock-specic poly(A+) RNAs and proteins in soybean seedlings during arsenite and cadmium treatments[J]. Plant Physiology,1988,86(4):1048-1056.
[116]Neumann D,Lichtenberger O,Günther D,et al. Heat-shock proteins induce heavy-metal tolerance in higher plants[J]. Planta,1994(194):360-367.
[117]Czarneck E,Nagao R T,Key J L,et al. Characterication of Gmhsp26-A,a stress gene encoding a divergent heat shock proteion of soybean:heavy-metal-induced inhibition of intron procession[J]. Molecular and Cellular Biology,1988,8(3):1113-1122.
[118]Pennazio S,Roggero P. Effect of cadmium and nickel on ethylene biosynthesis in soybean[J]. Biologia Plantarum,1992,34(3/4):345-349.
[119]Orvar B L,Ellis B E. Transgenic tobacco plants expressing antisense RNA for cytosolic ascorbate peroxidase show increased susceptibility to ozone injury[J]. The Plant Journal,1997,11(6):1297-1305.

相似文献/References:

[1]史景允,于伟红,梁秋生.蓖麻对镉污染土壤的修复潜力[J].江苏农业科学,2014,42(11):386.
 Shi Jingyun,et al(8).Potential repairing of cadmium contaminated soil by castor oil plant[J].Jiangsu Agricultural Sciences,2014,42(02):386.
[2]房春生,王帆,刘多,等.模拟酸雨对白菜体内铅、镉富集的影响[J].江苏农业科学,2013,41(08):323.
 Fang Chunsheng,et al.Effects of simulated acid rain on lead and cadmium accumulation in Brassica chinensis ssp. chinensis[J].Jiangsu Agricultural Sciences,2013,41(02):323.
[3]雷忻,郭兆权,延志莲,等.镉胁迫对泥鳅血清卵黄蛋白原的诱导作用[J].江苏农业科学,2013,41(09):321.
 Lei Xin,et al.Inductive effect of cadmium stress on serum vitellogenin in Misgurnus anguillicaudatus[J].Jiangsu Agricultural Sciences,2013,41(02):321.
[4]郭继斌,王莉,韩娇,等.联合浸提法测定土壤有效态镉[J].江苏农业科学,2016,44(03):369.
 Guo Jibin,et al.Determination of soil available Cd content by universal extraction method[J].Jiangsu Agricultural Sciences,2016,44(02):369.
[5]高华健,王玉祯,侯丹,等.锌调节镉胁迫水稻幼苗根系生长的生理机制[J].江苏农业科学,2013,41(12):48.
 Gao Huajian,et al.Physiological effect of zinc on growth of rice seedling roots under cadmium stress[J].Jiangsu Agricultural Sciences,2013,41(02):48.
[6]姚茹,黎小正.广西沿海主要贝类养殖区海水、表层沉积物及近江牡蛎体内重金属镉监测与评价[J].江苏农业科学,2014,42(01):316.
 Yao Ru,et al.Monitoring and comprehensive assessment of Cd in sea water,surface sediments and body of Crassostrea rivularis in main shellfish culture areas of Guangxi coastal waters[J].Jiangsu Agricultural Sciences,2014,42(02):316.
[7]刘标,尹红梅,陈薇,等.高效镉吸附菌株的筛选及生物学特性[J].江苏农业科学,2014,42(03):316.
 Liu Biao,et al.Screening and biological characteristics of strains with strong cadmium adsorption ability[J].Jiangsu Agricultural Sciences,2014,42(02):316.
[8]刘思思,高旋旋,胡竹青,等.镉诱导锦鲤肾脏氧化性DNA损伤及谷胱甘肽抗氧化系统改变[J].江苏农业科学,2016,44(02):272.
 Liu Sisi,et al.Cadmium induced renal oxidative DNA damage and glutathione antioxidant system change of brocade carp[J].Jiangsu Agricultural Sciences,2016,44(02):272.
[9]宋晓慧,陆引罡,何丹,等.烟草对镉的吸收及镉在亚细胞中的分布[J].江苏农业科学,2014,42(05):116.
 Song Xiaohui,et al.Absorbtion and subcellular distribution of cadmium in tobacco[J].Jiangsu Agricultural Sciences,2014,42(02):116.
[10]张美德,艾伦强,卢超,等.硒对镉胁迫下白术幼苗生理特性的影响[J].江苏农业科学,2015,43(10):306.
 Zhang Meide,et al.Effect of selenium on physiological characteristics of Atractylodes macrocephala Koidz. seedlings under cadmium stress[J].Jiangsu Agricultural Sciences,2015,43(02):306.

备注/Memo

备注/Memo:
收稿日期:2017-09-22
基金项目:国家自然科学基金(编号:41301566);中国地质科学院基本科研业务费项目(编号:YYWF201620);国土资源部公益性行业科研专项(编号:200911043-26);中国地质大调查项目(编号:12120113015400)。
作者简介:杨红霞(1979—),女,山东济南人,博士,教授级高级工程师,硕士生导师,主要从事环境地球化学及元素形态分析研究。E-mail:yanghongxia1@sina.com。
更新日期/Last Update: 2019-01-20