|本期目录/Table of Contents|

[1]王一雯,权淑静,马焕,等.海藻糖保护植物组织和动物细胞的作用机制综述[J].江苏农业科学,2019,47(02):14-18.
 Wang Yiwen,et al.Mechanism of action of trehalose on plant tissues and animal cells: a review[J].Jiangsu Agricultural Sciences,2019,47(02):14-18.
点击复制

海藻糖保护植物组织和动物细胞的作用机制综述(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第47卷
期数:
2019年第02期
页码:
14-18
栏目:
专论与综述
出版日期:
2019-01-20

文章信息/Info

Title:
Mechanism of action of trehalose on plant tissues and animal cells: a review
作者:
王一雯 权淑静 马焕 刘德海 解复红
河南省科学院生物研究所有限责任公司,河南郑州 450008
Author(s):
Wang Yiwenet al
关键词:
海藻糖非生物胁迫信号分子冻存剂作用机制
Keywords:
-
分类号:
S188
DOI:
-
文献标志码:
A
摘要:
海藻糖是一种由α-糖苷键联结葡萄糖分子组成的非还原性双糖,这种可溶性物质在绿藻及其他低等植物中发挥着重要的抗压保护作用。它能帮助植物应对严寒、干旱、高盐渍等极端环境,调节植物的气孔导度和水利用率,并作为信号分子参与植物的生长发育和代谢调节。作为一种非渗透性冷冻保护剂,海藻糖因无毒、高效而被广泛应用于各种动物细胞和组织器官的冷藏保护中。根据近年国内外相关研究成果,将海藻糖对植物组织和动物细胞的保护、调节及作用机制加以概述,以期为海藻糖的深入开发利用提供理论依据。
Abstract:
-

参考文献/References:

[1]姚林.Pseudomonas putida S1海藻糖合成酶基因在大肠杆菌中的表达及其条件研究[D]. 无锡:江南大学,2008.
[2]Feofilova E P,Usov A I,Mysyakina I S,et al. Trehalose:chemical structure,biological functions,and practical application[J]. Microbiology,2014,83(3):184-194.
[3]Park M,Mitchell W J,Rafii F. Effect of trehalose and trehalose transport on the tolerance of Clostridium perfringens to environmental stress in a wild type strain and its Fluoroquinolone-Resistant mutant[J]. International Journal of Microbiology,2016,48:29716.
[4]Lunn J E,Delorge I,Figueroa C M,et al. Trehalose metabolism in plants[J]. Plant Journal,2014,79(4):544-567.
[5]Tian T,Zhao G,Han D,et al. Effects of vitrification cryopreservation on follicular morphology and stress relaxation behaviors of human ovarian tissues:sucrose versus trehalose as the non-permeable protective agent[J]. Human Reproduction,2015,30(4):877-883.
[6]Malferrari M,Savitsky A,Lubitz W,et al. Protein immobilization capabilities of sucrose and trehalose glasses:the effect of protein/sugar concentration unraveled by High-Field EPR[J]. The Journal of Physical Chemistry Letters,2016,7(23):4871-4877.
[7]王羽,云雪艳,张晓燕,等. 海藻糖对蛋白质的抗逆保护及其在食品领域中的应用[J]. 食品科技,2015(10):229-232.
[8]陈素丽,彭瑜,周华,等. 植物海藻糖代谢及海藻糖-6-磷酸信号研究进展[J]. 植物生理学报,2014,50(3):233-242.
[9]Fernandez O,Vandesteene L,Feil R,et al. Trehalose metabolism is activated upon chilling in grapevine and might participate in Burkholderia phytofirmans induced chilling tolerance[J]. Planta,2012,236(2):355-369.
[10]张雯,王宇斐,郭延平. 高等植物6-磷酸海藻糖信号调控研究进展[J]. 植物生理学报,2016,52(4):394-400.
[11]王迪,罗音,高亚敏,等. 外施海藻糖对高温胁迫下小麦幼苗膜脂过氧化的影响[J]. 麦类作物学报,2016,36(7):925-932.
[12]李彦,张英鹏,孙明,等. 盐分胁迫对植物的影响及植物耐盐机理研究进展[J]. 中国农学通报,2008,24(1):258-265.
[13]闫道良,郑炳松. 海藻糖浸种对盐胁迫下扬麦19生理特性的影响[J]. 浙江农业学报,2016,28(8):1271-1276.
[14]孙梅霞,祖朝龙,徐经年. 干旱对植物影响的研究进展[J]. 安徽农业科学,2004,32(2):365-367,384.
[15]张丹,付莉莉,彭明,等. 实时荧光定量PCR检测木薯海藻糖合成酶基因(MeTPS1-3)干旱胁迫下的表达[J]. 热带作物学报,2013,34(7):1274-1277.
[16]陈强. 木薯海藻糖合成酶基因的表达及抗旱功能研究[D]. 海口:海南大学,2014:38-41.
[17]屠小菊,汪启明,饶力群. 高温胁迫对植物生理生化的影响[J]. 湖南农业科学,2013(13):28-30.
[18]Wahid A,Gelani S,Ashraf M,et al. Heat tolerance in plants:an overview[J]. Environmental and Experimental Botany,2007,61(3):199-223.
[19]Madan S Y,Reena B R,Munjal R. Trehalose mitigates heat stress-induced damages in wheat seedlings[J]. Journal of Wheat Research,2015,7(1):74-78.
[20]王迪. 外源海藻糖在高温胁迫下保护光系统II的结构和功能[D]. 上海:华东师范大学,2016:34-35.
[21]Gill S S,Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry,2010,48(12):909-930.
[22]李红芳,谷巍,席彩彩,等. 卷柏复苏过程中抗氧化系统响应机制及海藻糖含量变化[J]. 植物生理学报,2016,52(12):1872-1876.
[23]Luo Y,Li W M,Wang W. Trehalose:protector of antioxidant enzymes or reactive oxygen species scavenger under heat stress[J]. Environmental and Experimental Botany,2008,63(1/2/3):378-384.
[24]邓如福,裴炎,王瑜宁,等. 海藻糖对水稻幼苗抗寒性研究[J]. 西南农业大学学报,1991,13(3):347-349.
[25]符雪,王凌峰,陈吉,等. 海藻糖在低温保存组织中的应用研究现状[J]. 中国医疗前沿,2013,8(14):12-13.
[26]Zhu Z,Fan X,Pan Y,et al. Trehalose improves rabbit sperm quality during cryopreservation[J]. Cryobiology,2017,75:45-51.
[27]Wang Y,Dong S. Glutathione in combination with trehalose has supplementary beneficial effects on cryopreserved red deer (Cervus elaphus) sperm[J]. American Journal of Reproductive Immunology,2017,77(1):e12610.
[28]Aisen E G,Medina V H,Venturino A. Cryopreservation and post-thawed fertility of ram semen frozen in different trehalose concentrations[J]. Theriogenology,2002,57(7):1801-1808.
[29]Gómez-Fernández J,Gómez-Izquierdo E,Tomás C,et al. Effect of different monosaccharides and disaccharides on boar sperm quality after cryopreservation[J]. Animal Reproduction Science,2012,133(1/2):109-116.
[30]Aboagla E M,Terada T. Trehalose-enhanced fluidity of the goat sperm membrane and its protection during freezing[J]. Biology of Reproduction,2003,69(4):1245-1250.
[31]Tuncer P B,Sarlzkan S,Bucak M N,et al. Effect of glutamine and sugars after bull spermatozoa cryopreservation[J]. Theriogenology,2011,75(8):1459-1465.
[32]Wen Y Z,Su B X,Lyu S S,et al. Trehalose,an easy,safe and efficient cryoprotectant for the parasitic protozoan Trypanosoma brucei[J]. Acta Tropica,2016,164:297-302.
[33]Argüelles J C. Why cant vertebrates synthesize trehalose?[J]. Journal of Molecular Evolution,2014,79(3/4):111-116.
[34]Koster K L,Lei Y P,Anderson M,et al. Effects of vitrified and nonvitrified sugars on phosphatidylcholine fluid-to-gel phase transitions[J]. Biophysical Journal,2000,78(4):1932-1946.
[35]Koster K L,Webb M S,Bryant G,et al. Interactions between soluble sugars and POPC (1-palmitoyl-2-oleoylphosphatidylcholine) during dehydration:vitrification of sugars alters the phase behavior of the phospholipid[J]. Biochimica et Biophysica Acta,1994,1193(1):143-150.
[36]Crowe J H,Crowe L M,Chapman D. Preservation of membranes in anhydrobiotic organisms:the role of trehalose[J]. Science,1984,223(4637):701-703.
[37]Crowe L M,Crowe J H,Rudolph A,et al. Preservation of freeze-dried liposomes by trehalose[J]. Archives of Biochemistry and Biophysics,1985,242(1):240-247.
[38]Crowe J H,Hoekstra F A,Nguyen K H,et al. Is vitrification involved in depression of the phase transition temperature in dry phospholipids?[J]. Biochimica et Biophysica Acta,1996,1280(2):187-196.
[39]Kent B,Hunt T,Darwish T A,et al. Localization of trehalose in partially hydrated DOPC bilayers:insights into cryoprotective mechanisms[J]. Journal of the Royal Society Interface,2014,11(95):20140069.
[40]Crowe J H,Hoekstra F A,Crowe L M. Anhydrobiosis[J]. Annual Review of Physiology,1992,54:579-599.
[41]Sun W Q,Leopold A C,Crowe L M,et al. Stability of dry liposomes in sugar glasses[J]. Biophysical Journal,1996,70(4):1769-1776.
[42]Crowe J H,Crowe L M,Oliver A E,et al. The trehalose myth revisited:introduction to a symposium on stabilization of cells in the dry state[J]. Cryobiology,2001,43(2):89-105.
[43]Pereira C S,Hünenberger P H. Effect of trehalose on a phospholipid membrane under mechanical stress[J]. Biophysical Journal,2008,95(8):3525-3534.
[44]Lambruschini C,Relini A,Ridi A,et al. Trehalose interacts with phospholipid polar heads in Langmuir monolayers[J]. Langmuir,2000,16(12):5467-5470.
[45]白姝,常颖,刘小娟,等. 海藻糖和氨基酸之间相互作用的分子动力学模拟[J]. 物理化学学报,2014,30(7):1239-1246.
[46]Lenné T,Garvey C J,Koster K L,et al. Effects of sugars on lipid bilayers during dehydration-SAXS/WAXS measurements and quantitative model[J]. Journal of Physical Chemistry B,2009,113(8):2486-2491.
[47]Konov K B,Isaev N P,Dzuba S A. Low-temperature molecular motions in lipid bilayers in the presence of sugars:insights into cryoprotective mechanisms[J]. Journal of Physical Chemistry B,2014,118(43):12478-12485.
[48]Corradini D,Strekalova E G,Stanley H E,et al. Microscopic mechanism of protein cryopreservation in an aqueous solution with trehalose[J]. Scientific Reports,2013,3(2):1218.
[49]Garcia A B,Engler J,Iyer S,et al. Effects of osmoprotectants upon NaCl stress in rice[J]. Plant Physiology,1997,115(1):159-169.
[50]López M,Herrera-Cervera J A,Iribarne C,et al. Growth and nitrogen fixation in Lotus japonicus and Medicago truncatula under NaCl stress:nodule carbon metabolism[J]. Journal of Plant Physiology,2008,165(6):641-650.
[51]López M,Tejera N A,Iribarne C,et al. Trehalose and trehalase in root nodules of Medicago truncatula and Phaseolus vulgaris in response to salt stress[J]. Physiologia Plantarum,2008,134(4):575-582.
[52]El-Bashiti T,Hamamci H,Oktem H A,et al. Biochemical analysis of trehalose and its metabolizing enzymes in wheat under abiotic stress conditions[J]. Plant Science,2005,169(1):47-54.
[53]Jang I C,Oh S J,Seo J S,et al. Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth[J]. Plant Physiology,2003,131(2):516-524.
[54]Delorge I,Janiak M,Carpentier S,et al. Fine tuning of trehalose biosynthesis and hydrolysis as novel tools for the generation of abiotic stress tolerant plants[J]. Frontiers in Plant Science,2014,5(7):147.
[55]Li H W,Zang B S,Deng X W,et al. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice[J]. Planta,2011,234(5):1007-1018.
[56]王彬,周靖,赵文博,等. 海藻糖酶基因RNA干扰载体对花烟草的转化[J]. 中国农学通报,2014,30(15):282-285.
[57]Suzuki N,Bajad S,Shuman J,et al. The transcriptional co-activator MBF1c is a key regulator of thermotolerance in Arabidopsis thaliana[J]. Journal of Biological Chemistry,2008,283(14):9269-9275.
[58]Mercado S A,Slater N K. Increased cryosurvival of osteosarcoma cells using an amphipathic pH-responsive polymer for trehalose uptake[J]. Cryobiology,2016,73(2):175-180.
[59]Dovgan B,Barli cˇ A,Kneevi c′ M,et al. Cryopreservation of human Adipose-Derived stem cells in combination with trehalose and reversible electroporation[J]. The Journal of Membrane Biology,2017,250(1):1-9.
[60]Uchida T,Furukawa M,Kikawada T,et al. Intracellular trehalose via transporter TRET1 as a method to cryoprotect CHO-K1 cells[J]. Cryobiology,2017,77(17):50-57.
[61]Du T,Chao L,Zhao S,et al. Successful cryopreservation of whole sheep ovary by using DMSO-free cryoprotectant[J]. Journal of Assisted Reproduction and Genetics,2015,32(8):1267-1275.
[62]蒙健宗,高秀岩,马少敏,等. 海藻糖对纤维素酶的干燥保护作用[J]. 食品工业科技,2005,26(12):164-166.
[63]Fernandez O,Béthencourt L,Quero A,et al. Trehalose and plant stress responses:friend or foe[J]. Trends in Plant Science,2010,15(7):409-417.

相似文献/References:

[1]丁泽红,付莉莉,黄猛,等.木薯MeP5CS1基因的克隆、表达分析及载体构建[J].江苏农业科学,2017,45(18):40.
 Ding Zehong,et al.Cloning,expression and vector construction of MeP5CS1 gene in cassava[J].Jiangsu Agricultural Sciences,2017,45(02):40.
[2]庞椿朋,叶亮,马健,等.海藻糖对高温下番茄幼苗叶片光合作用的调控作用[J].江苏农业科学,2017,45(21):143.
 Pang Chunpeng,et al.Regulation of trehalose on photosynthesis of tomato seedling leaves under high heat stress[J].Jiangsu Agricultural Sciences,2017,45(02):143.
[3]李晓刚,李慧,杨青松,等.杜梨bHLH转录因子家族两成员的序列特征及对非生物胁迫的转录响应[J].江苏农业科学,2017,45(22):40.
 Li Xiaogang,et al.Sequence characteristics and transcriptional response of two members of bHLH transcription factors family to abiotic stresses in birch-leaf pear(Pyrus betulaefolia Bunge)[J].Jiangsu Agricultural Sciences,2017,45(02):40.
[4]阚延泽,江翱,王全禾,等.黄鳝醛酮还原酶对大肠杆菌非生物胁迫耐受性的影响[J].江苏农业科学,2019,47(01):159.
 Kan Yanze,et al.Effect of swamp eel aldo-keto reductase on abiotic stress tolerance of Escherichia coli[J].Jiangsu Agricultural Sciences,2019,47(02):159.
[5]司爱君,陈红,余渝,等.WRKY转录因子在植物非生物胁迫抗逆育种中的应用[J].江苏农业科学,2019,47(16):9.
 Si Aijun,et al.Application of WRKY transcription factors in plant abiotic stress tolerance breeding[J].Jiangsu Agricultural Sciences,2019,47(02):9.
[6]郑佳秋,吴永成,王薇薇,等.植物逆境相关长链非编码RNA的研究进展[J].江苏农业科学,2020,48(04):19.
 Zheng Jiaqiu,et al.Research progress on plant stress-related long non-coding RNA[J].Jiangsu Agricultural Sciences,2020,48(02):19.
[7]许达为,鲍恩财,邹佳宁,等.植物CDF转录因子功能研究进展[J].江苏农业科学,2020,48(14):12.
 Xu Dawei,et al.Research progress on function of plant CDF transcription factors[J].Jiangsu Agricultural Sciences,2020,48(02):12.
[8]侯丽媛,董艳辉,李亚莉,等.藜麦抗旱性研究进展与展望[J].江苏农业科学,2021,49(11):22.
 Hou Liyuan,et al.Research progress and prospect of drought tolerance of quinoa[J].Jiangsu Agricultural Sciences,2021,49(02):22.
[9]苏西娅,刘照亭,吉沐祥,等.枇杷的有效成分与非生物胁迫耐受性研究进展[J].江苏农业科学,2021,49(22):50.
 Su Xiya,et al.Research progress on effective components and abiotic stress tolerance of loquat[J].Jiangsu Agricultural Sciences,2021,49(02):50.
[10]杨青青,赵永强,刘灿玉,等.大蒜AsPEX7基因的克隆与非生物胁迫响应分析[J].江苏农业科学,2022,50(6):24.
 Yang Qingqing,et al.Cloning of AsPEX7 gene and its response to abiotic stress in garlic[J].Jiangsu Agricultural Sciences,2022,50(02):24.

备注/Memo

备注/Memo:
收稿日期:2017-09-15
基金项目:河南省人才项目(编号:154200510025)。
作者简介:王一雯(1989—),女,河南郑州人,硕士研究生,研究实习员,主要从事酶工程研究。E-mail:hnswwyw@163.com。
通信作者:刘德海,研究员,主要从事酶工程研究。E-mail:sysliu168@163.com。
更新日期/Last Update: 2019-01-20