|本期目录/Table of Contents|

[1]刘蕊,王宁宁,王玉康,等.油菜种子含油量影响因素及调控综述[J].江苏农业科学,2019,47(12):25-29.
 Liu Rui,et al.Factors affecting oil content of rapeseed and its regulation: a review[J].Jiangsu Agricultural Sciences,2019,47(12):25-29.
点击复制

油菜种子含油量影响因素及调控综述(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第47卷
期数:
2019年第12期
页码:
25-29
栏目:
专论与综述
出版日期:
2019-07-10

文章信息/Info

Title:
Factors affecting oil content of rapeseed and its regulation: a review
作者:
刘蕊1 王宁宁1 王玉康1 李明1 曹维1 王政1 张洁夫2 谭小力1
1.江苏大学生命科学研究院,江苏镇江 212013; 2.江苏省农业科学院经济作物研究所,江苏南京 210014
Author(s):
Liu Ruiet al
关键词:
油菜含油量影响因素和调控基因工程
Keywords:
-
分类号:
S565.401
DOI:
-
文献标志码:
A
摘要:
作为世界重要油料作物之一的油菜(Brassica napus),其种子油不仅在食用植物油领域占据重要地位,在化工产业和生物能源领域也发挥举足轻重的作用。本文主要综述油菜种子含油量影响因素及调控方面的研究进展,提出运用基因工程提高油菜种子油含量的策略,以期为油菜含油量的大幅度提高提供参考依据。
Abstract:
-

参考文献/References:

[1]Subramaniam S,Fahy E,Gupta S,et al. Bioinformatics and systems biology of the lipidome[J]. Chemical Reviews,2011,111(10):6452-6490.
[2]柴国华. 甘蓝型油菜含油量相关转录因子的研究及突变位点的筛选[D]. 北京:中国农业科学院,2009.
[3]Frentzen M. Acyltransferases from basic science to modified seed oils[J]. Lipid-Fett,1998,100(4/5):161-166.
[4]Bates P D,Johnson S R,Cao X,et al. Fatty acid synthesis is inhibited by inefficient utilization of unusual fatty acids for glycerolipid assembly[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(3):1204-1209.
[5]Hills M J. Control of storage-product synthesis in seeds[J]. Current Opinion in Plant Biology,2004,7(3):302-308.
[6]张垚,李云昌,梅德圣,等. 油菜油脂研究进展[J]. 植物学通报,2007,24(4):435-443.
[7]代柳亭.不同含油量甘蓝型油菜种子油脂分布、生理生化特性以及化学调控的研究[D]. 重庆:西南大学,2008:4-6.
[8]Salas J J,Ohlrogge J B. Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases[J]. Archives of Biochemistry and Biophysics,2002,403(1):25-34.
[9]朱亚娜. 油菜种子油脂基因的定位及温度对种子油分积累影响的分子机制[D]. 杭州:浙江大学,2011:3-5.
[10]周丹,赵江哲,柏杨,等. 植物油脂合成代谢及调控的研究进展[J]. 南京农业大学学报,2012,35(5):77-86.
[11]Jain R K,Coffey M,Lai K,et al. Enhancement of seed oil content by expression of glycerol-3-phosphate acyltransferase genes[J]. Biochemical Society Transactions,2000,28(6):958-961.
[12]Bourgis F,Kader J C,Barret P,et al. A plastidial lysophosphatidic acid acyltransferase from oilseed rape[J]. Plant Physiology,1999,120(3):913-922.
[13]Jako C,Kumar A,Wei Y,et al. Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight[J]. Plant physiology,2001,126(2):861-874.
[14]文均.甘蓝型油菜种子发育过程中油脂积累动态及关键基因的表达差异分析[D]. 重庆:西南大学,2017.
[15]Turnham E,Northcote D H. Changes in the activity of acetyl-COA carboxylase during rape-seed formation[J]. Biochemical Journal,1983(212):223-229.
[16]Lock Y Y,Snyder C L,Zhu W,et al. Antisense suppression of type 1 diacylglycerol acyltransferase adversely affects plant development in Brassica napus[J]. Physiologia Plantarum,2009,137(1):61-71.
[17]Weselake R J,Shah S,Tang M G,et al. Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content[J]. Journal of Experimental Botany,2008,59(13):3543-3549.
[18]夏晗,王兴军,李孟军,等. 利用基因工程改良植物脂肪酸和提高植物含油量的研究进展[J]. 生物工程学报,2010,26(6):735-743.
[19]李擎天,牛素玲,陈受宜,等. 植物种子油脂积累的转录调控及在大豆中的研究进展[J]. 大豆科学,2013(1):124-129,132.
[20]Liu J,Hua W,Zhan G,et al. Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of wri1-like gene from Brassica napus[J]. Plant Physiology and Biochemistry,2010,48(1):9-15.
[21]Wu X L,Liu Z H,Hu Z H,et al. BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed[J]. Journal of Integrative Plant Biology,2014,56(6):582-593.
[22]Liu F,Xia Y P,Wu L,et al. Enhanced seed oil content by overexpressing genes related to triacylglyceride synthesis[J]. Gene,2015,557(2):163-171.
[23]Li Q,Shao J,Tang S,et al. Wrinkled1 accelerates flowering and regulates lipid homeostasis between oil accumulation and membrane lipid anabolism in Brassica napus[J]. Frontiers in Plant Science,2015(6):1015.
[24]Elahi N,Duncan R W,Stasolla C. Modification of oil and glucosinolate content in canola seeds with altered expression of Brassica napus LEAFY COTYLEDON1[J]. Plant Physiology and Biochemistry,2016,100:52-63.
[25]Wang H,Guo J,Lambert K N,et al. Developmental control of Arabidopsis seed oil biosynthesis[J]. Planta,2007,226(3):773-783.
[26]Elahi N,Duncan R W,Stasolla C. Decreased seed oil production in FUSCA3 Brassica napus mutant plants[J]. Plant Physiology and Biochemistry,2015,96:222-230.
[27]Kagaya Y,Toyoshima R,Okuda R,et al. LEAFY COTYLEDON1 controls seed storage protein genes through its regulation of FUSCA3 and ABSCISIC ACID INSENSITIVE3[J]. Plant and Cell Physiology,2005,46(3):399-406.
[28]Delmas F,Sankaranarayanan S,Deb S A,et al. ABI3 controls embryo degreening through Mendels I locus[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(40):3888-3894.
[29]Baud S,Mendoza M S,To A,et al. WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis[J]. The Plant Journal:for Cell and Molecular Biology,2007,50(5):825-838.
[30]Wang H Y,Guo J H,Lambert K N,et al. Developmental control of Arabidopsis seed oil biosynthesis[J]. Planta,2007,226(3):773-783.
[31]To A,Valon C,Savino G,et al. A network of local and redundant gene regulation governs Arabidopsis seed maturation[J]. The Plant Cell,2006,18(7):1642-1651.
[32]Zheng Y M,Ren N,Wang H,et al. Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like15[J]. Plant Cell,2009,21(9):2563-2577.
[33]熊书,李彦杰,周大祥.油菜MADS-box家族基因AGL11的克隆、表达及转化油菜的研究[J]. 西南农业学报,2017(10):2174-2178.
[34]Wang J,Jian H J,Wang T Y,et al. Identification of microRNAs actively involved in fatty acid biosynthesis in developing Brassica napus seeds using High-Throughput sequencing[J]. Frontiers in Plant Science,2016,7:1570.
[35]Wang Z W,Qiao Y,Zhang J J,et al. Genome wide identification of microRNAs involved in fatty acid and lipid metabolism of Brassica napus by small RNA and degradome sequencing[J]. Gene,2017,619:61-70.
[36]Zhu Y A,Cao Z Y,Xu F,et al. Analysis of gene expression profiles of two near-isogenic lines differing at a QTL region affecting oil content at high temperatures during seed maturation in oilseed rape (Brassica napus L.)[J]. Theoretical and Applied Genetics,2012,124(3):515-531.
[37]Young L W,Wilen R W,Bonham-Smith P C. High temperature stress of Brassica napus during flowering reduces micro-and megagametophyte fertility,induces fruit abortion,and disrupts seed production[J]. Journal of Experimental Botany,2004,55(396):485-495.
[38]唐琳. 青藏高原地区甘蓝型油菜油份积累潜势研究[D]. 北京:中国农业科学院,2013:2-4.
[39]徐亮.不同海拔条件下春油菜光合生理和产油量的响应[J]. 江苏农业科学,2017,45(1):92-94.
[40]Namazkar S,Stockmarr A,Frenck G,et al. Concurrent elevation of CO2,O3 and temperature severely affects oil quality and quantity in rapeseed[J]. Journal of Experimental Botany,2016,67(14):4117-4125.
[41]张树杰,张春雷.接种蚯蚓对油菜籽粒产量和含油率的影响[J]. 应用生态学报,2011,22(6):1499-1503.
[42]谭太龙,徐一兰,张宏军,等. 栽培因子对油菜含油量的影响[J]. 作物研究,2009,23(2):97-100.
[43]张辉,朱德进,黄卉,等. 不同施肥处理对油菜产量及品质的影响[J]. 土壤,2012,44(6):966-971.
[44]Lally R D,Galbally P,Moreira A S,et al. Application of endophytic pseudomonas fluorescens and a bacterial consortium to Brassica napus can increase plant height and biomass under greenhouse and field conditions[J]. Frontiers in Plant Science,2017,8:2193.
[45]周可金.油菜(Brassica napus L.)化学催熟及其生理机制的研究[D]. 长沙:湖南农业大学,2009.
[46]马霓,肖圣元,张明海,等. 栽培方式对油菜中双11生长及收获特性的影响[J]. 湖北农业科学,2011,50(2):244-247.
[47]Zentella R,Zhang Z L,Park M,et al. Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis[J]. Plant Cell,2007,19(10):3037-3057.
[48]杜雪.油菜生殖生长阶段赤霉素对产油量与籽粒品质的影响及机制[D]. 杭州:浙江大学,2015:103-105.
[49]王小丹.油菜高产栽培技术[J]. 农民致富之友,2017(13):20.
[50]Chia T Y,Pike M J,Rawsthorne S. Storage oil breakdown during embryo development of Brassica napus (L.)[J]. Journal of Experimental Botany,2005,56(415):1285-1296.
[51]McKillican M E. Lipid changes in maturing oil-bearing plants:Ⅳ. Changes in lipid classes in rape and crambe oils[J]. Journal of the American Oil Chemists’ Society,1966,43(7):461-465.
[52]Gurr M I,Blades J,Appleby R S. Studies on seed-oil triglycerides:the composition of Crumbé abyssinica triglycerides during seed maturation[J]. European Journal of Biochemistry,1972,29(2):362-368.
[53]Norton G,Harris J F. Compositional changes in developing rape seed(Brassica napus L.)[J]. Planta,1975,123(2):163-174.
[54]Murphy D J,Cummins I. Biosynthesis of seed storage products during embryogenesis in rapeseed,Brassica napus[J]. Journal of Plant Physiology,1989,135(1):63-69.
[55]Germain V,Rylott E L,Larson T R,et al. Requirement for 3-ketoacyl-CoA thiolase-2 in peroxisome development,fatty acid beta-oxidation and breakdown of triacylglycerol in lipid bodies of Arabidopsis seedlings[J]. Plant Journal,2001,28(1):1-12.
[56]Elhiti M,Yang C C,Chan A,et al. Altered seed oil and glucosinolate levels in transgenic plants overexpressing the Brassica napus SHOOTMERISTEMLESS gene[J]. Journal of Experimental Botany,2012,63(12):4447-4461.
[57]陈四龙. 花生油脂合成相关基因的鉴定与功能研究[D]. 北京:中国农业科学院,2012.
[58]Kelly A A,Shaw E,Powers S J,et al. Suppression of the SUGAR-DEPENDENT1 triacylglycerol lipase family during seed development enhances oil yield in oilseed rape (Brassica napus L.)[J]. Plant Biotechnology Journal,2013,11(3):355-361.
[59]丁全如.通过干扰油菜AP2及种子储藏蛋白调节油菜种子含油量[D]. 武汉:湖北大学,2011:26-31.
[60]邢蔓,谭太龙,李健,等. 甘蓝型油菜PEPC基因ihpRNA表达载体的构建与遗传转化研究[J]. 华北农学报,2016,31(6):7-11.
[61]唐鹤珊,张边江,陈全战,等. 转玉米C4PEPC基因油菜叶片特异性表达的可行性探讨[J]. 湖北农业科学,2013,52(22):5396-5398.
[62]Vigeolas H,Waldeck P,Zank T,et al. Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter[J]. Plant Biotechnology Journal,2007,5(3):431-441.
[63]王伏林,吴关庭,郎春秀,等. 转异质型ACCase复合基因对油菜含油量的影响[J]. 分子植物育种,2017,15(3):920-927.

相似文献/References:

[1]朱志武,刘雪基,陈震,等.烯效唑对油菜植株及产量性状的影响[J].江苏农业科学,2013,41(05):77.
 Zhu Zhiwu,et al.Effect of uniconazole on growth and yield traits of rapeseed[J].Jiangsu Agricultural Sciences,2013,41(12):77.
[2]孙华,张建栋,黄萌,等.高产、多抗、适合机械化作业油菜新品种苏油7号的选育[J].江苏农业科学,2015,43(12):105.
 Sun Hua,et al.Breeding of new rapeseed cultivar “Suyou No.7” with high yield,multi-resistance and being suitable for mechanized operations[J].Jiangsu Agricultural Sciences,2015,43(12):105.
[3]李锦霞,李爱民,沈学庆,等.油菜板茬条播高产栽培技术集成[J].江苏农业科学,2013,41(08):104.
 Li Jinxia,et al.High yield cultivation technology integration of drilling rapeseed in non-tillage land[J].Jiangsu Agricultural Sciences,2013,41(12):104.
[4]刘雪基,李爱民,莫婷,等.稻茬油菜免耕摆栽覆草高产栽培技术研究[J].江苏农业科学,2013,41(08):107.
 Liu Xueji,et al.No-tillage and covering grass high-yield cultivation technology of rapeseed in paddy fields[J].Jiangsu Agricultural Sciences,2013,41(12):107.
[5]何俊龙,刘强,宋海星,等.包膜复混肥对油菜产量与生物量的影响[J].江苏农业科学,2014,42(08):103.
 He Junlong,et al.Effect of coated compound fertilizer on yield and biomass of rapeseed[J].Jiangsu Agricultural Sciences,2014,42(12):103.
[6]张洁夫,陈锋,戚存扣,等.早熟、高产、适合机械化作业油菜新品种宁杂27的选育[J].江苏农业科学,2013,41(09):93.
 Zhang Jiefu,et al.Breeding of new rapeseed cultivar “Ningza 27” with early maturity, high yield and being suitable for mechanized operations[J].Jiangsu Agricultural Sciences,2013,41(12):93.
[7]张智,田建华,任军荣,等.高油双低杂交油菜秦油88的选育、制种及高产栽培技术[J].江苏农业科学,2016,44(03):99.
 Zhang Zhi,et al.Breeding,seed production and high-yield cultivation techniques of hybrid rapeseed “Qinyou 88” with high oil and double low[J].Jiangsu Agricultural Sciences,2016,44(12):99.
[8]钟雪梅,代其林,马明莉,等.外源NO浸种对NaCl胁迫下油菜种子萌发和幼苗生长的影响[J].江苏农业科学,2016,44(03):102.
 Zhong Xuemei,et al.Effects of seed soaking with exogenous NO on seed germination and seedling growth of rapeseed under NaCl stress[J].Jiangsu Agricultural Sciences,2016,44(12):102.
[9]朱德进,张辉,黄卉,等.不同施肥处理对不同地力水平油菜产量和经济效益的影响[J].江苏农业科学,2013,41(10):73.
 Zhu Dejin,et al.Effects of fertilizer treatments on yield and economic benefits of rapeseed under different soil fertility[J].Jiangsu Agricultural Sciences,2013,41(12):73.
[10]牛艳,赵子丹,姜瑞,等.氨氯吡啶酸在油菜和土壤中的消解动态[J].江苏农业科学,2013,41(10):306.
 Niu Yan,et al.Degradation dynamics of picloram in rapeseed and soil[J].Jiangsu Agricultural Sciences,2013,41(12):306.

备注/Memo

备注/Memo:
收稿日期:2018-03-02
基金项目:国家自然科学基金面上项目(编号:31471527)。
作者简介:刘蕊(1991—),女,河南南阳人,硕士研究生,主要从事植物分子生物学研究。E-mail:17788356219@163.com。
通信作者:谭小力,博士,研究员,主要从事植物功能基因组学研究。E-mail:xltan@ujs.edu.cn。
更新日期/Last Update: 2019-06-20