|本期目录/Table of Contents|

[1]刘云芬,彭华,王薇薇,等.植物耐盐性生理与分子机制研究进展[J].江苏农业科学,2019,47(12):30-36.
 Liu Yunfen,et al.Research progress on physiological and molecular mechanisms of salt tolerance for plants[J].Jiangsu Agricultural Sciences,2019,47(12):30-36.
点击复制

植物耐盐性生理与分子机制研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第47卷
期数:
2019年第12期
页码:
30-36
栏目:
专论与综述
出版日期:
2019-07-10

文章信息/Info

Title:
Research progress on physiological and molecular mechanisms of salt tolerance for plants
作者:
刘云芬 彭华 王薇薇 郑佳秋 祖艳侠 吴永成 梅燚 郭军
江苏沿海地区农业科学研究所,江苏盐城 224002
Author(s):
Liu Yunfenet al
关键词:
盐胁迫植物耐盐机制研究进展生理机制分子机制
Keywords:
-
分类号:
Q945.78;S184
DOI:
-
文献标志码:
A
摘要:
随着经济的发展,严重的工业污染以及不良的农业生产活动方式使得土壤盐渍化程度加重,土壤盐渍化以及盐碱地资源如何利用成为一个世界性问题。我国拥有大面积无法正常利用的沿海滩涂盐碱地。研究植物耐盐机制对提高植物耐盐性和作物产量,培育耐盐新品种以及对盐碱地的充分利用有重要的理论意义与实践意义。结合前人研究成果,综述盐胁迫对植物的危害、植物耐盐生理及分子机制、提高植物耐盐性的主要方法。同时笔者还针对现阶段存在的问题进行分析,对今后植物耐盐性方面的研究方向进行展望。
Abstract:
-

参考文献/References:

[1]李建国,濮励杰,朱明,等. 土壤盐渍化研究现状及未来研究热点[J]. 地理学报,2012,67(9):1233-1245.
[2]Vincent D,Ergul A,Bohlman M C,et al. Proteomic analysis reveals differences between Vitis vinifera L. cv. Chardonnay and cv. Cabernet Sauvignon and their responses to water deficit and salinity[J]. Journal of Experimental Botany,2007,58(7):1873-1892.
[3]张昆,李明娜,曹世豪,等. 植物盐胁迫下应激调控分子机制研究进展[J]. 草地学报,2017,25(2):226-235.
[4]王佳丽,黄贤金,钟太洋,等. 盐碱地可持续利用研究综述[J]. 地理学报,2011,66(5):673-684.
[5]王娟,黄荣峰. 乙烯调控植物耐盐性的研究进展[J]. 植物生理学报,2015,51(10):1567-1572.
[6]Deinlein U,Stephan A B,Horie T,et al. Plant salt-tolerance mechanisms[J]. Trends in Plant Science,2014,19(6):371-379.
[7]陈敏,李海云,吕福堂. 植物耐盐性研究进展[J]. 聊城大学学报(自然科学版),2011,24(3):47-50.
[8]杨少辉,季静,王罡,等. 盐胁迫对植物影响的研究进展[J]. 分子植物育种,2006,4(增刊1):139-142.
[9]石玉,潘媛媛,张毅,等. 光碳核肥对盐胁迫下黄瓜幼苗生长抑制的缓解效应[J]. 西北农业学报,2017,26(5):752-758.
[10]戴伟民,蔡润,潘俊松,等. 盐胁迫对番茄幼苗生长发育的影响[J]. 上海农业学报,2002,18(1):58-62.
[11]赵满兴,贺菲菲,王文强. 不同钠盐胁迫对草木樨和碱茅种子萌发的影响[J]. 黑龙江农业科学,2015(6):109-112.
[12]Munns R. Physiological processes limiting plant growth in saline soils:some dogmas and hypotheses[J]. Plant Cell and Environment,2010,16(1):15-24.
[13]Royce T E,Rozowsky J S,Gerstein M B. Toward a Universal microarray:prediction of gene expression through nearest-neighbor probe sequence identification[J]. Nucleic Acids Research,2007,35(15):e99.
[14]Maas E V,Grieve C M. Sodium-induced calcium deficiency in salt-stressed corn[J]. Plant Cell and Environment,2010,10(7):559-564.
[15]陈沁,刘友良. 谷胱甘肽对盐胁迫大麦叶片活性氧清除系统的保护作用[J]. 作物学报,2000,26(3):365-371.
[16]李晓雅,赵翠珠,程小军,等. 盐胁迫对亚麻荠幼苗生理生化指标的影响[J]. 西北农业学报,2015,24(4):76-83.
[17]冯利波,蒋卫杰,亢秀萍,等. 植物耐盐性机理及基因控制技术研究进展[J]. 农业工程学报,2005,21(增刊):5-9.
[18]周艳,刘慧英,王松,等. 外源GSH对盐胁迫下番茄幼苗生长及抗逆生理指标的影响[J]. 西北植物学报,2016,36(3):515-520.
[19]Hsu J L,Sung J M. Antioxidant role of glutathione associated with accelerated aging and hydration of triploid watermelon seeds[J]. Physiologia Plantarum,1997,100(4):967-974.
[20]Luchli A,Polito V S. Displacement of Ca2+by Na+from the plasmalemma of root cells:A primary response to salt stress?[J]. Plant Physiology,1985,79(1):207-211.
[21]戴高兴,彭克勤,皮灿辉. 钙对植物耐盐性的影响[J]. 中国农学通报,2003,19(3):97-101.
[22]Boughanmi N,Michonneau P,Daghfous D,et al. Adaptation of Medicago sativa cv. Gabès to long-term NaCl stress[J]. Journal of Plant Nutrition and soil Science,2005,168(2):262-268.
[23]Evans M J,Choi W G,Gilroy S,et al. A ROS-assisted calcium wave dependent on the AtRBOHD NADPH oxidase and TPC1 cation channel propagates the systemic response to salt stress[J]. Plant Physiology,2016,171(3):1771-1784.
[24]束胜,郭世荣,孙锦,等. 盐胁迫下植物光合作用的研究进展[J]. 中国蔬菜,2012(18):53-61.
[25]刘家栋,翟兴礼,王东平. 植物抗盐机理的研究[J]. 农业与技术,2001(1):26-29.
[26]利容千,王建波. 植物逆境细胞及生理学[M]. 武汉:武汉大学出版社,2002:1-467.
[27]Askari H,Edqvist J,Hajheidari M,et al. Effects of salinity levels on proteome of Suaeda aegyptiaca leaves[J]. Proteomics,2006,6(8):2542-2554.
[28]Zhao K,Li J. Effects of salinity on the contents of osmotica of monocotyledenous halophytes and their contribution to osmotic adjustment[J]. Acta Botanica Sinica,1999,41(12):1287-1292.
[29]孟繁昊,王聪,徐寿军. 盐胁迫对植物的影响及植物耐盐机理研究进展[J]. 内蒙古民族大学学报(自然科学版),2014,29(3):315-318.
[30]Shen Y E,Shen L K,Shen Z X,et al. The potassium transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice[J]. Plant Cell and Environment,2015,38(12):2766-2779.
[31]James R A,Blake C,Byrt C S,et al. Major genes for Na+ exclusion,Nax1 and Nax2(wheat HKT1;4 and HKT1;5),decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions[J]. Journal of Experimental Botany,2011,62(8):2939-2947.
[32]Maathuis F J,Amtmann A N. K+nutrition and Na+toxicity:the basis of cellular K+/Na+ratios[J]. Annals of Botany,1999,84(2):123-133.
[33]Zhang J L,Shi H Z. Physiological and molecular mechanisms of plant salt tolerance[J]. Photosynthesis Research,2013,115(1):1-22.
[34]Rodríguez H G,Drew M C. Growth,water relations,and accumulation of organic and inorganic solutes in roots of maize seedlings during salt stress[J]. Plant Physiology,1997,113(3):881-893.
[35]Zheng Y,Liao C C,Zhao S S,et al. The glycosyltransferase QUA1 regulates chloroplast-associated calcium signaling during salt and drought stress in arabidopsis[J]. Plant and Cell Physiology,2017,58(2):329-341.
[36]Qi W C,Zhang L,Xu H B,et al. Physiological and molecular characterization of the enhanced salt tolerance induced by low-dose gamma irradiation in Arabidopsis seedlings[J]. Biochemical and Biophysical Research Communications,2014,450(2):1010-1015.
[37]Bohnert H J,Jensen R G. Strategies for engineering water-stress tolerance in plants[J]. Trends in Biotechnology,1996,14(3):89-97.
[38]范惠玲,刘秦,白生文,等. 不同生态型芸芥中有机物质对盐胁迫的响应[J]. 中国农学通报,2017,33(3):52-56.
[39]尚娜,李景富,吴明臣. 盐胁迫下番茄幼苗对赤霉素处理的响应[J]. 基因组学与应用生物学,2017(7):2965-2972.
[40]白江平,王晓斌,高慧娟,等. 干旱和盐胁迫对马铃薯试管苗亚细胞结构及生理生化指标的影响[J]. 西北植物学报,2016,36(11):2233-2240.
[41]江超. 紫花苜蓿耐盐生理特性及转录组分析[D]. 泰安:山东农业大学,2014:1-60.
[42]Knight H,Trewavas A J,Knight M R. Calcium signalling in Arabidopsis thaliana responding to drought and salinity[J]. The Plant Journal:for Cell and Molecular Biology,1997,12(5):1067-1078.
[43]王芳,万书波,孟庆伟,等. Ca2+在植物盐胁迫响应机制中的调控作用[J]. 生命科学研究,2012,16(4):362-367.
[44]Shi H Z. Integration of Ca2+ in plant drought and salt stress signal transduction pathways[M]//Jenks M A,Hasegawa P M,Jain S M. Advances in molecular breeding toward drought and salt tolerant crops. Berlin:Springer,2007:141-182.
[45]吴雪霞,陈建林,查丁石,等. 植物耐盐性研究进展[J]. 江西农业学报,2008,20(2):11-13,40.
[46]陈莎莎,兰海燕. 植物对盐胁迫响应的信号转导途径[J]. 植物生理学报,2011,47(2):119-128.
[47]Zhu J K. Regulation of ion homeostasis under salt stress[J]. Current Opinion in Plant Biology,2003,6(5):441-445.
[48]Chinnusamy V,Zhu J K,Zhu J. Salt stress signaling and mechanisms of plant[J]. Genetic Engineering,2006(27):141-177.
[49]Leung J,Giraudat J. Abscisic acid signal transduction[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1998,49(1):199-222.
[50]毕影东,刘清醒,郭长虹,等. ABA与植物耐盐信号转导途径的研究进展[J]. 中国农学通报,2013,29(9):167-171.
[51]Harmon A C,Gribskov M,Harper J F. CDPKs - a kinase for every Ca2+ signal?[J]. Trends in Plant Science,2000,5(4):154-159.
[52]Xu J,Tian Y S,Peng R H,et al. AtCPK6,a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis[J]. Planta,2010,231(6):1251-1260.
[53]Asano T,Hayashi N,Kikuchi S,et al. CDPK-mediated abiotic stress signaling[J]. Plant Signaling and Behavior,2012,7(7):817-821.
[54]黄冬,吴燕. 植物磷脂酶C的功能研究进展[J]. 生命科学,2017,29(6):575-581.
[55]王培培,宋萍,张群. 磷脂酶D信号转导与植物耐盐研究进展[J]. 生物技术通报,2016,32(10):58-65.
[56]Krantz M,Ahmadpour D,Ottosson L,et al. Robustness and fragility in the yeast high osmolarity glycerol (HOG) signal-transduction pathway[J]. Molecular Systems Biology,2009,5(1):281-287.
[57]Urao T,Yakubov B,Satoh R,et al. A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor[J]. Plant Cell,1999,11(9):1743-1754.
[58]Miransari M,Rangbar B,Khajeh K,et al. Salt stress and MAPK signaling in plants[M]. New York:Springer,2013:157-173.
[59]林金辉,党峰峰,陈建鸿,等. CaMAPK9过表达可显著提高拟南芥耐盐水平[J]. 农业生物技术学报,2017,25(10):1612-1621.
[60]Chen J B,Yang J W,Zhang Z Y,et al. Two P5CS genes from common bean exhibiting different tolerance to salt stress in transgenic Arabidopsis[J]. Journal of Genetics,2013,92(3):461-469.
[61]Liu Z H,Zhang H M,Li G L,et al. Enhancement of salt tolerance in alfalfa transformed with the gene encoding for betaine aldehyde dehydrogenase[J]. Euphytica,2011,178(3):363-372.
[62]师恭曜,王玉美,华金平. 水通道蛋白与高等植物的耐盐性[J]. 中国农业科技导报,2012,14(4):31-38.
[63]徐娜. 番茄SlMIP基因的克隆与耐盐性分析[D]. 北京:中国农业科学院,2013:1-60.
[64]Park B J,Liu Z,Kanno A,et al. Increased tolerance to salt-and water-deficit stress in transgenic lettuce(Lactuca sativa L.)by constitutive expression of LEA[J]. Plant Growth Regulation,2005,45(2):165-171.
[65]Can V T. 杧果小分子热激蛋白基因的克隆及其逆境胁迫下的功能分析[D]. 南宁:广西大学,2015:1-97.
[66]Sun X,Sun C,Li Z,et al. AsHSP17,a creeping bentgrass small heat shock protein modulates plant photosynthesis and ABA-dependent and independent signalling to attenuate plant response to abiotic stress[J]. Plant Cell and Environment,2016,39(6):1320-1337.
[67]Song N H,Ahn Y J. DcHsp17.7,a small heat shock protein in carrot,is tissue-specifically expressed under salt stress and confers tolerance to salinity[J]. New Biotechnology,2011,28(6):698-704.
[68]Shi H Z,Kim Y,Guo Y,et al. The arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion[J]. Plant Cell,2003,15(1):19-32.
[69]Liu M,Wang T Z,Zhang W H. Sodium extrusion associated with enhanced expression of SOS1 underlies different salt tolerance between Medicago falcata and Medicago truncatula seedlings[J]. Environmental and Experimental Botany,2015,110:46-55.
[70]张莹. 互花米草SOS1基因和HKT1基因的克隆及耐盐转基因水稻研究[D]. 烟台:烟台大学,2012.
[71]吴剑,宋宝安,胡德禹,等. 植物耐盐性的信号转导途径及相关基因研究进展[J]. 山地农业生物学报,2011,30(5):443-447.
[72]Zhu J H,Byeongha L,Dellinger M,et al. A cellulose synthase-like protein is required for osmotic stress tolerance in Arabidopsis[J]. Plant Journal for Cell and Molecular Biology,2010,63(1):128-140.
[73]马风勇,石晓霞,许兴,等. 拟南芥SOS基因家族与植物耐盐性研究进展[J]. 中国农学通报,2013,29(21):121-125.
[74]Li W Y F,Wong F L,Tsai S N,et al. Tonoplast-located GmCLC1 and GmNHX1 from soybean enhance NaCl tolerance in transgenic bright yellow(BY)-2 cells[J]. Plant Cell and Environment,2006,29(6):1122-1137.
[75]Brini F,Gaxiola R A,Berkowitz G A,et al. Cloning and characterization of a wheat vacuolar cation/proton antiporter and pyrophosphatase proton pump[J]. Plant Physiology and Biochemistry,2005,43(4):347-354.
[76]Yu J N,Huang J,Wang Z N,et al. An Na+/H+ antiporter gene from wheat plays an important role in stress tolerance[J]. Journal of Biosciences,2007,32(6):1153-1161.
[77]Gaxiola R A,Rao R,Sherman A,et al. The Arabidopsis thaliana proton transporters,AtNhx1 and Avp1,can function in cation detoxification in yeast[J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96(4):1480-1485.
[78]Mishra S,Alavilli H,Lee B,et al. Cloning and functional characterization of a vacuolar Na+/H+antiporter gene from mungbean(VrNHX1)and its ectopic expression enhanced salt tolerance in Arabidopsis thaliana[J]. PLoS One,2014,9(10):1-14.
[79]Rodríguez-Rosales M P,Venema K. Overexpression of the tomato K+/H+antiporter LeNHX2 confers salt tolerance by improving potassium compartmentalization[J]. New Phytologist,2008,179(2):366-377.
[80]Wang Q,Guan C,Wang P,et al. AtHKT1;1 and AtHAK5 mediate low-affinity Na+uptake in Arabidopsis thaliana under mild salt stress[J]. Plant Growth Regulation,2015,75(3):615-623.
[81]Zhang J L,Flowers T J,Wang S M. Mechanisms of sodium uptake by roots of higher plants[J]. Plant and Soil,2009,326(1/2):45-60.
[82]Kader M A,Seidel T,Golldack D,et al. Expressions of OsHKT1,OsHKT2,and OsVHA are differentially regulated under NaCl stress in salt-sensitive and salt-tolerant rice(Oryza sativa L.)cultivars[J]. Journal of Experimental Botany,2006,57(15):4257-4268.
[83]An D,Chen J G,Gao Y Q,et al. AtHKT1 drives adaptation of Arabidopsis thaliana to salinity by reducing floral sodium content[J]. PLoS Genetics,2017,13(10):e1007086.
[84]Roxas V P,Lodhi S A,Garrett D K,et al. Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase[J]. Plant and Cell Physiology,2000,41(11):1229-1234.
[85]刘晓忠,王志霞,李建坤. 低盐锻炼提高水稻幼苗耐盐性及其与活性氧毒害的关系[J]. 中国水稻科学,1997,11(1):33-38.
[86]罗黄颖,杨丽文,高洪波,等. γ-氨基丁酸浸种对番茄种子及幼苗耐盐性调节的生理机制[J]. 西北植物学报,2011,31(11):2235-2242.
[87]胡晓辉,邹志荣,杨振超,等. Spd诱导NaCl胁迫下番茄种子萌发和幼苗耐盐性效应研究[J]. 北方园艺,2009(10):5-8.
[88]杨瑾,廉华,王彦宏,等. 外源海藻糖对NaCl胁迫下番茄幼苗生理指标的影响[J]. 河南农业科学,2009,38(12):97-100.
[89]马光. 外源一氧化氮对盐胁迫下大豆幼苗生理指标的影响[J]. 江苏农业科学,2015,43(7):96-97.
[90]林栖凤,邓用川,李冠一. 外源DNA导入辣椒、番茄、茄子培育耐盐植株的研究[C]//中国生物化学与分子生物学会农业生物化学与分子生物学分会第八次学术研讨会论文集,2008:32-35.
[91]Niu M L,Huang Y,Sun S T,et al. Root respiratory burst oxidase homologue-dependent H2O2 production confers salt tolerance on a grafted cucumber by controlling Na+ exclusion and stomatal closure[J]. Journal of Experimental Botany,2018,69(14):3465-3476.

相似文献/References:

[1]刘骥,王燕,郭建华,等.盐胁迫诱导的TabZIP60转录因子的筛选与分析[J].江苏农业科学,2013,41(08):18.
 Liu Ji,et al.Screening and analysis of TabZIP60 transcription factor induced by salt stress[J].Jiangsu Agricultural Sciences,2013,41(12):18.
[2]冯蕾,刘国荣,侯晓杰,等.NaCl胁迫对枳椇和皂荚生长及渗透调节物质的影响[J].江苏农业科学,2014,42(12):230.
 Feng Lei,et al.Effects of NaCl stress on growth and osmotic regulation of Hovenia dulcia and Gleditsia sinensis[J].Jiangsu Agricultural Sciences,2014,42(12):230.
[3]陈阳春,张本厚,贾明良,等.盐胁迫对半夏组培苗生长及生理指标的影响[J].江苏农业科学,2014,42(12):62.
 Chen Yangchun,et al.Effects of salt stress on growth and physiological indices of tissue culture seedlings of Pinellia ternata (Thunb.) Breit.[J].Jiangsu Agricultural Sciences,2014,42(12):62.
[4]王鑫,孔祥生.盐胁迫对流苏树愈伤组织生理生化特性的影响[J].江苏农业科学,2014,42(11):54.
 Wang Xin,et al().Effect of salt stress on physio-biochemical indices of Chionanthus retusus callus[J].Jiangsu Agricultural Sciences,2014,42(12):54.
[5]吕艳伟,何文慧,陈雨鸥,等.盐胁迫对小麦幼苗光合色素含量和细胞膜的影响[J].江苏农业科学,2013,41(06):74.
 Lü Yanwei,et al.Effects of salt stress on photosynthetic chlorophyll content and cell membrane in wheat[J].Jiangsu Agricultural Sciences,2013,41(12):74.
[6]包奇军,柳小宁,张华瑜,等.NaCl与NaHCO3+Na2CO3对不同基因型啤酒大麦萌发期胁迫效应的比较[J].江苏农业科学,2014,42(10):92.
 Bao Qijun,et al.Comparison of stress effects of NaCl and NaHCO3+Na2CO3 on different genotypes of malting barley seeds during germination stage[J].Jiangsu Agricultural Sciences,2014,42(12):92.
[7]谷文英,牟莹莹,钱泽,等.外源甜菜碱对盐胁迫下菊苣幼苗线粒体膜氧化损伤的缓解作用[J].江苏农业科学,2013,41(07):198.
 Gu Wenying,et al.Mitigative effect of exogenous glycine betaine on mitochondrial membrane oxidative damage of chicory seedling under salt stress[J].Jiangsu Agricultural Sciences,2013,41(12):198.
[8]余莉琳,裴宗平,常晓华,等.干旱胁迫及复水对4种矿区生态修复草本植物生理特性的影响[J].江苏农业科学,2013,41(07):362.
 Yu Lilin,et al.Effects of drought stress and rewatering on physiological characteristics of several herbaceous plants with ecological restoration function[J].Jiangsu Agricultural Sciences,2013,41(12):362.
[9]杨永恒,黄苏珍.NaCl胁迫下甜菊不同耐盐性单株的生长及生理响应[J].江苏农业科学,2013,41(08):87.
 Yang Yongheng,et al.Growth and physiological response of Stevia rebaudiana Bertoni plants with different salt tolerance under salt stress[J].Jiangsu Agricultural Sciences,2013,41(12):87.
[10]乔海龙,陈和,陈健,等.盐胁迫对不同大麦品种产量及品质的影响[J].江苏农业科学,2014,42(09):83.
 Qiao Hailong,et al.Effects of salt stress on yield and quality of different barley varieties[J].Jiangsu Agricultural Sciences,2014,42(12):83.

备注/Memo

备注/Memo:
收稿日期:2018-02-02
基金项目:江苏省苏北科技专项(编号:SZ-YC2017057)。
作者简介:刘云芬(1989—),女,江西吉安人,博士,助理研究员,研究方向为植物抗逆性研究。E-mail:15105102053@163.com。
通信作者:郭军,研究员,主要从事蔬菜遗传育种及栽培技术研究。E-mail:guojunyc@163.com。
更新日期/Last Update: 2019-06-20