|本期目录/Table of Contents|

[1]张亚坤,宋鹏,潘大宇,等.Cu2+胁迫对大豆生长和抗氧化酶活性的影响[J].江苏农业科学,2019,47(12):89-92.
 Zhang Yakun,et al.Effects of Cu2+ stress on growth and antioxidant enzyme activity of soybean seedlings[J].Jiangsu Agricultural Sciences,2019,47(12):89-92.
点击复制

Cu2+胁迫对大豆生长和抗氧化酶活性的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第47卷
期数:
2019年第12期
页码:
89-92
栏目:
遗传育种与耕作栽培
出版日期:
2019-07-10

文章信息/Info

Title:
Effects of Cu2+ stress on growth and antioxidant enzyme activity of soybean seedlings
作者:
张亚坤1234 宋鹏23 潘大宇23 王文森23 周亚男23 王成23 罗斌23
1.东北农业大学电气与信息学院,黑龙江哈尔滨 150030; 2.北京农业智能装备技术研究中心,北京 100097;
3.国家农业智能装备工程技术研究中心,北京 100097;4.河南科技大学农业装备工程学院,河南洛阳 471003
Author(s):
Zhang Yakunet al
关键词:
Cu2+胁迫活性氧抗氧化酶生物量大豆
Keywords:
-
分类号:
S565.101
DOI:
-
文献标志码:
A
摘要:
植物体摄入过量的重金属Cu2+会对植物产生毒害作用,为探讨外施Cu2+对大豆幼苗的毒害机理,以齐黄35为试验材料,采用盆栽法,以不同浓度(0、20、200、400 μg/g)Cu2+处理液进行胁迫,研究外源Cu2+胁迫对大豆丙二醛(MDA)含量、抗氧化酶活性(超氧化物歧化酶SOD、过氧化氢酶POD)和根茎干鲜质量(地上干鲜质量和地下干鲜质量)的影响。结果表明,随着Cu2+胁迫浓度的增加,MDA含量呈现上升趋势;对2种抗氧化酶的活性影响显著,但活性影响方向不一致,显著降低SOD活性,增强POD活性,各Cu2+处理下SOD活性与同期对照组(15 d)相比降低 1.90%~19.55%,POD活性与同期对照组(15 d)相比增强31.36%~49.45%;Cu2+胁迫显著降低大豆幼苗地上干质量、地上鲜质量、地下干质量、地下鲜质量、总鲜质量、总干质量,与对照组相比,400 μg/g浓度的Cu2+胁迫分别下降了55.58%、64.79%、60.31%、85.42%、57.46%、74.79%。Cu2+胁迫引起丙二醛、抗氧化酶和根茎干鲜质量的显著变化,抑制大豆幼苗的正常生长,丙二醛是Cu2+胁迫的重要表征指标,研究为大豆幼苗的Cu2+毒害机理提供依据。
Abstract:
-

参考文献/References:

[1]Michaud A M,Chappellaz C,Hinsinger P. Copper phytotoxicity affects root elongation and iron nutrition in durum wheat (Triticum turgidum durum L.)[J]. Plant and Soil,2008,310(1/2):151-165.
[2]de Freitas T A,Frana M G,de Almeida A A,et al. Morphology,ultrastructure and mineral uptake is affected by copper toxicity in young plants of Inga subnuda subs. luschnathiana (Benth.)T.D.Penn[J]. Environmental Science & Pollution Research,2015,22(20):15479-15494.
[3]Adrees M,Ali S,Rizwan M,et al. Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants:a review[J]. Ecotoxicology & Environmental Safety,2015,119:186-197.
[4]张凤,郝树芹,陈昆. 铜胁迫对矮牵牛幼苗生长、光合色素及活性氧代谢的影响[J]. 西部林业科学,2017,46(6):97-102.
[5]Liu J J,Wei Z,Li J H. Effects of copper on leaf membrane structure and root activity of maize seedling[J]. Botanical Studies,2014,55(47):1-6.
[6]Thounaojam T C,Panda P,Panda P,et al. Excess copper induced oxidative stress and response of antioxidants in rice[J]. Plant Physiology & Biochemistry,2012,53(4):33-39.
[7]Alkorta I,Hernández-Allica J,Becerril J M,et al. Chelate-enhanced phytoremediation of soils polluted with heavy metals[J]. Reviews in environmental Science & Biotechnology,2004,3(1):55-70.
[8]Shahid M,Austruy A,Echevarria G,et al. EDTA-enhanced phytoremediation of heavy metals:a review[J]. Soil & Sediment Contamination,2014,23(4):389-416.
[9]Upadhyay R K,Panda S K. Zinc reduces copper toxicity induced oxidative stress by promoting antioxidant defense in freshly grown aquatic duckweed Spirodela polyrhiza L.[J]. Journal of Hazardous Materials,2010,175(1/2/3):1081-1084.
[10]王小玲,高柱,黄益宗,等. 铜胁迫对3种草本植物生长和重金属积累的影响[J]. 生态毒理学报,2014,9(4):699-706.
[11]Mittler R. Oxidative stress,antioxidants and stress tolerance[J]. Trends in Plant Science,2002,7(9):405-410.
[12]Jiang M,Zhang J. Role of abscisic acid in water stress-induced antioxidant defense in leaves of maize seedlings[J]. Free Radical Research,2002,36(9):1001-1015.
[13]Shashi K,Surender K,Pravin P,et al. Antioxidant defence mechanisms in chickpea(Cicer arietinum L.)under copper and arsenic toxicity[J]. International Journal of Plant Physiology and Biochemistry,2014,6(4):40-43.
[14]Feigl G,Kumar D,Lehotai N,et al. Comparing the effects of excess copper in the leaves of Brassica juncea (L. Czern) and Brassica napus (L.) seedlings:growth inhibition,oxidative stress and photosynthetic damage[J]. Acta Biologica Hungarica,2015,66(2):205-221.
[15]Kalai T,Khamassi K,Silva J D,et al. Cadmium and copper stress affect seedling growth and enzymatic activities in germinating barley seeds[J]. Archives of Agronomy & Soil Science,2014,60(6):765-783.
[16]仲晓春,戴其根,何理,等. 不同浓度镉胁迫下水稻冠层光谱特征及其预测评价[J]. 农业环境科学学报,2012,31(3):448-454.
[17]赵世杰,许长成,邹琦,等. 植物组织中丙二醛测定方法的改进[J]. 植物生理学通讯,1994(3):207-210.
[18]董金皋,樊慕贞,韩建民. 芸薹链格孢菌毒素对白菜细胞膜透性、SOD酶和POD酶活性的影响[J]. 植物病理学报,1999,29(2):138.
[19]李伶俐,杨青华,李文. 棉花幼铃脱落过程中IAA、ABA、MDA含量及SOD、POD活性的变化[J]. 植物生理学报,2001,27(3):215-220.
[20]Sommer A L. Copper as an essential for plant growth[J]. Plant Physiology,1931,6(2):339-345.
[21]Krpe D A,Aras S. Evaluation of copper-induced stress on eggplant(Solanum melongena L.)seedlings at the molecular and population levels by use of various biomarkers[J]. Mutation Research,2011,719(1/2):29-34.
[22]Mi Y,Ma X,Chen S. Resistant evaluation of kiwifruit rootstocks to root zone hypoxia stress[J]. American Journal of Plant Sciences,2013,4(4):945-954.
[23]Gajewska E,Skodowska M. Differential effect of equal copper,cadmium and nickel concentration on biochemical reactions in wheat seedlings[J]. Ecotoxicology and Environmental Safety,2010,73(5):996-1003.
[24]Mei L,Daud M K,Ullah N,et al. Pretreatment with salicylic acid and ascorbic acid significantly mitigate oxidative stress induced by copper in cotton genotypes[J]. Environmental Science and Pollution Research,2015,22(13):9922-9931.
[25]Chen J,Shafi M,Li S,et al. Copper induced oxidative stresses,antioxidant responses and phytoremediation potential of Moso bamboo(Phyllostachys pubescens)[J]. Scientific Reports,2015,5(3):13554.
[26]胡筑兵,陈亚华,王桂萍,等. 铜胁迫对玉米幼苗生长、叶绿素荧光参数和抗氧化酶活性的影响[J]. 植物学通报,2006,23(2):129-137.
[27]潘雪峰,李明,赵盼,等. 铜胁迫对穿心莲幼苗生长及生理特性的影响[J]. 植物科学学报,2015,33(2):218-225.
[28]Xu X Y,Shi G X,Wang J,et al. Copper-induced oxidative stress in Alternanthera philoxeroides callus[J]. Plant Cell Tissue and Organ Culture,2011,106(2):243-251.
[29]Lombardi L,Sebastiani L. Copper toxicity in Prunus cerasifera:growth and antioxidant enzymes responses of in vitro grown plants[J]. Plant Science,2005,168(3):797-802.
[30]Dat J,Vandenabeele S,Vranová E,et al. Dual action of the active oxygen species during plant stress responses[J]. Cellular & Molecular Life Sciences,2000,57(5):779-795.

相似文献/References:

[1]邓琳琼,赵菲菲,张以忠.细野荞水提液清除活性氧的效果[J].江苏农业科学,2014,42(08):298.
 Deng Linqiong,et al.Effect of aqueous extracts of Fagopyrum gracilipes on scavenging reactive oxygen species[J].Jiangsu Agricultural Sciences,2014,42(12):298.
[2]刘超,支崇远,李培林,等.舟形藻生长运动过程对重金属Cu2+急性毒性胁迫响应研究[J].江苏农业科学,2016,44(03):373.
 Liu Chao,et al.Response of Navicula growth process to Cu2+ acute toxicity stress[J].Jiangsu Agricultural Sciences,2016,44(12):373.
[3]高华健,王玉祯,侯丹,等.锌调节镉胁迫水稻幼苗根系生长的生理机制[J].江苏农业科学,2013,41(12):48.
 Gao Huajian,et al.Physiological effect of zinc on growth of rice seedling roots under cadmium stress[J].Jiangsu Agricultural Sciences,2013,41(12):48.
[4]白青云,顾振新.低氧胁迫对发芽粟谷抗氧化酶活性及GABA含量的影响[J].江苏农业科学,2013,41(12):89.
 Bai Qingyun,et al.Effects of hypoxia stress on antioxidant enzymes activities and γ-aminobutyric acid (GABA) contents in germinated millet[J].Jiangsu Agricultural Sciences,2013,41(12):89.
[5]徐小勇,许晓玲,刘玉玲,等.椪柑原生质体培养过程中羟自由基和总活性氧水平的分析[J].江苏农业科学,2016,44(05):196.
 Xu Xiaoyong,et al.Analysis of hydroxyl radical and total active oxygen levels in ponkan (Citrus reticulata Blanco) protoplasts during culture[J].Jiangsu Agricultural Sciences,2016,44(12):196.
[6]李玉华,赵奇,雷志华,等.不同地黄品种叶片中活性氧和抗氧化物质的差异研究[J].江苏农业科学,2016,44(06):377.
 Li Yuhua,et al.Study on difference of reactive oxygen and antioxidant substances in lamina of different Rehmannia glutinosa varieties[J].Jiangsu Agricultural Sciences,2016,44(12):377.
[7]王华华,黄俊骏,杨丽丹.大豆幼苗中抗坏血酸和谷胱甘肽对干旱胁迫的生理响应[J].江苏农业科学,2014,42(05):86.
 Wang Huahua,et al.Physiological response of ascorbate and glutathione to drought stress in soybean seedlings[J].Jiangsu Agricultural Sciences,2014,42(12):86.
[8]张永福,黄鹤平,银立新,等.冷(热)激对干旱胁迫下玉米活性氧清除及膜脂过氧化的调控机制[J].江苏农业科学,2015,43(05):56.
 Zhang Yongfu,et al.Regulation mechanism of cold(heat) shock to active oxygen scavenging and membrane lipid peroxidation under drought stress in maize[J].Jiangsu Agricultural Sciences,2015,43(12):56.
[9]韩金龙,李慧,蔺经,等.钙对盐胁迫下杜梨叶片抗氧化系统的影响[J].江苏农业科学,2016,44(06):245.
 Han Jinglong,et al.Effect of Ca on leaf antioxidant system of Pyrus betulaefolia under salt stress[J].Jiangsu Agricultural Sciences,2016,44(12):245.
[10]顾蓓蓓,卢劲晔,马卉,等.活性氧自由基在试验性乳腺炎大鼠发病机制中的作用[J].江苏农业科学,2016,44(08):294.
 Gu Beibei,et al.Effect of reactive oxygen species on pathogenesis of experimental mastitis in rats[J].Jiangsu Agricultural Sciences,2016,44(12):294.

备注/Memo

备注/Memo:
收稿日期:2018-01-26
基金项目:国家自然科学基金(编号:31601216);北京市农林科学院科技创新能力建设专项(编号:KJCX20170418);广东省东莞市社会科技发展项目(编号:2014108101045)。
作者简介:张亚坤(1991—),男,河南洛阳人,博士研究生,研究方向为作物表型与生理信息获取。E-mail:zhangyakun2011@163.com。
通信作者:罗斌,博士,高级工程师,主要从事农业信息技术研究。E-mail:luob@nercita.org.cn。
更新日期/Last Update: 2019-06-20