|本期目录/Table of Contents|

[1]帅良,孙健,段振华,等.植物非特异性磷脂酶C的研究进展[J].江苏农业科学,2019,47(18):30-37.
 Shuai Liang,et al.Research progress of structure and function of plant non-specific phospholipase C[J].Jiangsu Agricultural Sciences,2019,47(18):30-37.
点击复制

植物非特异性磷脂酶C的研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第47卷
期数:
2019年第18期
页码:
30-37
栏目:
专论与综述
出版日期:
2019-10-15

文章信息/Info

Title:
Research progress of structure and function of plant non-specific phospholipase C
作者:
帅良12 孙健1 段振华2 李丽1 何雪梅1 李昌宝1 廖玲燕2
1.广西壮族自治区农业科学院/广西作物遗传改良生物技术重点开放实验室/广西果蔬贮藏与加工新技术重点实验室
培育基地,广西南宁 530007; 2.贺州学院食品与生物工程学院/食品科学与工程技术研究院,广西贺州 542899
Author(s):
Shuai Lianget al
关键词:
非特异性磷脂酶C二酰基甘油逆境胁迫信号转导
Keywords:
-
分类号:
S184
DOI:
-
文献标志码:
A
摘要:
非特异性磷脂酶C(non-specific PLC,NPC)能够水解磷脂酸胆碱和磷脂酰乙醇胺生成二酰基甘油(diacylglycerol,DAG),虽然非特异性磷脂酶C没有PLC家族基因的C2、X、Y、EF等结构域,但它仍含有1个磷酸酯酶结构域,能够水解磷脂。近年来研究发现,非特异性磷脂酶C在植物逆境胁迫和信号转导的过程中起着重要的调节作用。因此本文对非特异性磷脂酶C的结构、生理功能及其作用机制进行概述,并对其研究前景进行了展望。
Abstract:
-

参考文献/References:

[1]Wang G L,Ryu S,Wang X M. Plant phospholipases:an overview[J]. Methods in Molecular Biology,2012,861:123-137.
[2]Hong Y Y,Zhao J,Guo L,et al. Plant phospholipases D and C and their diverse functions in stress responses[J]. Progress in Lipid Research,2016,62:55-74.
[3]Wang X. Plant phospholipases[J]. Annual Review of Plant Physiology and Plant Molecular Biology,2001,52(4):211-231.
[4]Macfarlane M G,Knight B C. The biochemistry of bacterial toxins:the lecithinase activity of Cl.welchii toxins[J]. Biochemical Journal,1941,35(8/9):884-902.
[5]Kates M. Hydrolysis of lecithin by plant plastid enzymes[J]. Canadian Journal of Biochemistry and Physiology,1955,33(4):575-589.
[6]Peters C,Li M Y,Narasimhan R,et al. Nonspecific phospholipase C NPC4 promotes responses to abscisic acid and tolerance to hyperosmotic stress in Arabidopsis[J]. Plant Cell,2010,22(8):2642-2659.
[7]Chrastil J,Parrish F W. Phospholipases C and D in rice grains[J]. Journal of Agricultural & Food Chemistry,1987,35(4):624-627.
[8]胡利芹,薛飞洋,李微微,等. 谷子非特异性磷脂酶C基因SiNPC4的克隆及功能分析[J]. 作物学报,2015(7):1017-1026.
[9]Song J L,Zhou Y H,Zhang J R,et al. Structural,expression and evolutionary analysis of the non-specific phospholipase C gene family in Gossypium hirsutum[J]. BMC Genomics,2017,18:979.
[10]孙大千,董金晔,李洋,等. 磷脂酰肌醇特异性磷脂酶C基因研究进展[J]. 生物技术,2017(1):92-97.
[11]Nakamura Y,Awai K,Masuda T,et al. A novel phosphatidylcholine-hydrolyzing phospholipase C induced by phosphate starvation in Arabidopsis[J]. Journal of Biological Chemistry,2005,280(9):7469-7476.
[12]Pokotylo I,Pejchar P,Potock y′ M,et al. The plant non-specific phospholipase C gene family. Novel competitors in lipid signalling[J]. Progress in Lipid Research,2013,52(1):62-79.
[13]Felts R L,Reilly T J,Tanner J J. Structure of Francisella tularensis AcpA:prototype of a unique superfamily of acid phosphatases and phospholipases C[J]. Journal of Biological Chemistry,2006,281(40):30289-30298.
[14]Gaude N,Nakamura Y,Scheible W R,et al. Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis[J]. Plant Journal,2008,56(1):28-39.
[15]Reddy V S,Rao D K V,Rajasekharan R. Functional characterization of lysophosphatidic acid phosphatase from Arabidopsis thaliana[J]. Biochimica et Biophysica Acta(BBA)-Molecular and Cell Biology of Lipids,2010,1801(4):455-461.
[16]Krcˇková Z,Brouzdová J,Daněk M,et al. Arabidopsis non-specific phospholipase C1:characterization and its involvement in response to heat stress[J]. Frontiers in Plant Science,2015,6:928.
[17]Krcˇková Z,Kocourková D,Daněk M,et al. The Arabidopsis thaliana non-specific phospholipase C2 is involved in the response to Pseudomonas syringae attack[J]. Annals of Botany,2018,121(2):297-310.
[18]Scherer G F E,Paul R U,Holk A,et al. Down-regulation by elicitors of phosphatidylcholine-hydrolyzing phospholipase C and up-regulation of phospholipase A in plant cells[J]. Biochemical and Biophysical Research Communications,2002,293(2):766-770.
[19]Nakamura Y,Ohta H. The diacylglycerol forming pathways differ among floral organs of Petunia hybrida[J]. FEBS Letters,2007,581(28):5475-5479.
[20]Pejchar P,Potock y′ M,Novotná Z,et al. Aluminium ions inhibit the formation of diacylglycerol generated by phosphatidylcholine-hydrolysing phospholipase C in tobacco cells[J]. New Phytologist,2010,188(1):150-160.
[21]Pejchar P,Potock y′ M,Krcˇková Z,et al. Non-specific phospholipase C4 mediates response to aluminum toxicity in Arabidopsis thaliana[J]. Frontiers in Plant Science,2015,6:66.
[22]Pejchar P,Martinec J. Aluminum ions alter the function of non-specific phospholipase C through the changes in plasma membrane physical properties[J]. Plant Signaling & Behavior,2015,10(6):e1031938.
[23]Pokotylo I V,Kretynin S V,Khripach V A,et al. Influence of 24-epibrassinolide on lipid signalling and metabolism in Brassica napus[J]. Plant Growth Regulation,2014,73(1):9-17.
[24]Nofer J R,Junker R,Seedorf U,et al. D609-phosphatidylcholine-specific phospholipase C inhibitor attenuates thapsigargin-induced sodium influx in human lymphocytes[J]. Cellular Signalling,2000,12(5):289-296.
[25]Liffourrena A S,Massimelli M J,Forrellad M A,et al. Tetradecyltrimethylammonium inhibits Pseudomonas aeruginosa hemolytic phospholipase C induced by choline[J]. Current Microbiology,2007,55(6):530-536.
[26]Munnik T,Irvine R F,Musgrave A. Phospholipid signalling in plants[J]. Biochimica et Biophysica Acta-Lipids and Lipid Metabolism,1998,1389(3):222-272.
[27]Andersson M X,Larsson K E,Tjellstrm H,et al. Phosphate-limited oat. The plasma membrane and the tonoplast as major targets for phospholipid- to-glycolipid replacement and stimulation of phospholipases in the plasma membrane[J]. Journal of Biological Chemistry,2005,280(30):27578-27586.
[28]Carter C,Pan S Q,Zouhar J,et al. The vegetative vacuole proteorne of Arabidopsis thaliana reveals predicted and unexpected proteins[J]. Plant Cell,2004,16(12):3285-3303.
[29]Singh A,Kanwar P,Pandey A,et al. Comprehensive genomic analysis and expression profiling of phospholipase C gene family during abiotic stresses and development in rice[J]. PLoS One,2013,8(4):e62494.
[30]Calderon-Villalobos L I,Kuhnle C,Li H,et al. LucTrap vectors are tools to generate luciferase fusions for the quantification of transcript and protein abundance in vivo[J]. Plant Physiology,2006,141(1):3-14.
[31]Ha K S,Thompson G A. Diacylglycerol metabolism in the green Alga Dunaliella salina under osmotic stress:possible role of diacylglycerols in phospholipase C-mediated signal transduction[J]. Plant Physiology,1991,97(3):921-927.
[32]Daniela K,Zuzana K,Prˇemysl P,et al. The phosphatidylcholine-hydrolysing phospholipase C NPC4 plays a role in response of Arabidopsis roots to salt stress[J]. Journal of Experimental Botany,2011,62(11):3753-3763.
[33]Peters C,Kim S C,Devaiah S,et al. Non-specific phospholipase C5 and diacylglycerol promote lateral root development under mild salt stress in Arabidopsis[J]. Plant Cell and Environment,2014,37(9):2002-2013.
[34]Illésˇ P,Ovecˇka M,Pavlovkin J,et al. Aluminium toxicity in plants:internalization of aluminium into cells of the transition zone in Arabidopsis root apices related to changes in plasma membrane potential,endosomal behaviour,and nitric oxide production[J]. Journal of Experimental Botany,2006,57(15):4201-4213.
[35]Matsumoto H. Cell biology of aluminum toxicity and tolerance in higher plants[J]. International Review of Cytology,2000,200:1-46.
[36]Rengel Z,Zhang W H. Role of dynamics of intracellular calcium in aluminium-toxicity syndrome[J]. New Phytologist,2010,159(2):295-314.
[37]Ramos-Díaz A,Brito-Argáez L,Munnik T A,et al. Aluminum inhibits phosphatidic acid formation by blocking the phospholipase C pathway[J]. Planta,2007,225(2):393-401.
[38]Charng Y Y,Liu H C,Liu N Y,et al. A heat-inducible transcription factor,HsfA2,is required for extension of acquired thermotolerance in Arabidopsis[J]. Plant Physiology,2007,143(1):251-262.
[39]Canonne J,Froidurenicolas S,Rivas S. Phospholipases in action during plant defense signaling[J]. Plant Signaling & Behavior,2011,6(1):13-18.
[40]Laxalt A M,Munnik T. Phospholipid signalling in plant defence[J]. Current Opinion in Plant Biology,2002,5(4):332-338.
[41]Albrecht U,Bowman K D. Gene expression in Citrus sinensis(L.)Osbeck following infection with the bacterial pathogen Candidatus Liberibacter asiaticus causing Huanglongbing in Florida[J]. Plant Science,2008,175(3):291-306.
[42]Kurosaki F,Tsurusawa Y,Nishi A. Breakdown of phosphatidylinositol during the elicitation of phytoalexin production in cultured carrot cells[J]. Plant Physiology,1987,85(3):601-604.
[43]Yamaguchi T,Minami E,Ueki J,et al. Elicitor-induced activation of phospholipases plays an important role for the induction of defense responses in suspension-cultured rice cells[J]. Plant and Cell Physiology,2005,46(4):579-587.
[44]van der Luit A H,Piatti T,van Doorn A,et al. Elicitation of suspension-cultured tomato cells triggers the formation of phosphatidic acid and diacylglycerol pyrophosphate[J]. Plant Physiology,2000,123(4):1507-1516.
[45]Zhang Y Y,Zhu H Y,Zhang Q,et al. Phospholipase Dα1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis[J]. Plant Cell,2009,21(8):2357-2377.
[46]den Hartog M,Verhoef N,Munnik T. Nod factor and elicitors activate different phospholipid signaling pathways in suspension-cultured alfalfa cells[J]. Plant Physiology,2003,132(1):311-317.
[47]Laxalt A M,Raho N,Have A T,et al. Nitric oxide is critical for inducing phosphatidic acid accumulation in xylanase-elicited tomato cells[J]. Journal of Biological Chemistry,2007,282(29):21160-21168.
[48]Zhang W D,Chen J,Zhang H J,et al. Overexpression of a rice diacylglycerol kinase gene OsBIDK1 enhances disease resistance in transgenic tobacco[J]. Molecules and Cells,2008,26(3):258-264.
[49]Wimalasekera R,Pejchar P,Holk A,et al. Plant phosphatidylcholine-hydrolyzing phospholipases C NPC3 and NPC4 with roles in root development and brassinolide signaling in Arabidopsis thaliana[J]. Molecular Plant,2010,3(3):610-625.
[50]Aloni R,Aloni E,Langhans M,et al. Role of auxin in regulating Arabidopsis flower development[J]. Planta,2006,223(2):315-328.
[51]孙建,裴慧娟,路小铎,等. 拟南芥非特异性磷脂酶C2的磷脂酰胆碱特异性磷脂酶C活性研究[J]. 山东农业科学,2008(8):6-10.
[52]孙建,裴慧娟,路小铎,等. 拟南芥非特异性磷脂酶C4基因表达模式的研究[J]. 生物技术通报,2008(6):83-86,96.
[53]Carrasco S,Mérida I. Diacylglycerol,when simplicity becomes complex[J]. Trends in Biochemical Sciences,2007,32(1):27-36.
[54]Gómez-fernández J C,Corbalán-García S. Diacylglycerols,multivalent membrane modulators[J]. Chemistry & Physics of Lipids,2007,148(1):1-25.
[55]Murphy D J. Plant lipids:biology,utilisation and manipulation[M]. Blackwell Publishing Ltd.,2005.
[56]Miège C,Maréchal E. 1,2-sn-Diacylglycerol in plant cells:product,substrate and regulator[J]. Plant Physiology and Biochemistry,1999,37(11):795-808.
[57]Haselier A,Akbari H,Weth A,et al. Two closely related genes of Arabidopsis encode plastidial cytidinediphosphate diacylglycerol synthases essential for photoautotrophic growth[J]. Plant Physiology,2010,153(3):1372-1384.
[58]Chen J P,Burke J J,Xin Z,et al. Characterization of the Arabidopsis thermosensitive mutant atts02 reveals an important role for galactolipids in thermotolerance[J]. Plant Cell and Environment,2006,29(7):1437-1448.
[59]Ramani B,Zorn H,Papenbrock J. Quantification and fatty acid profiles of sulfolipids in two halophytes and a glycophyte grown under different salt concentrations[J]. Zeitschrift Fur Naturforschung,2004,59(11/12):835-842.
[60]Bonaventure G,Schuck S,Baldwin I T. Revealing complexity and specificity in the activation of lipase-mediated oxylipin biosynthesis:a specific role of the Nicotiana attenuata GLA1 lipase in the activation of jasmonic acid biosynthesis in leaves and roots[J]. Plant Cell and Environment,2011,34(9):1507-1520.
[61]McNeil S D,Nuccio M L,Ziemak M J,et al. Enhanced synthesis of choline and glycine betaine in transgenic tobacco plants that overexpress phosphoethanolamine N-methyltransferase[J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98(17):10001-10005.
[62]Rivoal J,Hanson A D. Choline-O-sulfate biosynthesis in plants (identification and partial characterization of a salinity-inducible choline sulfotransferase from species of limonium (Plumbaginaceae)[J]. Plant Physiology,1994,106(3):1187-1193.
[63]Yu Y,Halet G,Lai F A,et al. Regulation of diacylglycerol production and protein kinase C stimulation during sperm‐and PLCζ‐mediated mouse egg activation[J]. Biology of the Cell,2012,100(11):633-643.
[64]Halet G. PKC signaling at fertilization in mammalian eggs[J]. Biochimica et Biophysica Acta-Molecular Cell Research,2004,1742(1/2/3):185-189.
[65]Griner E M,Kazanietz M G. Protein kinase C and other diacylglycerol effectors in cancer[J]. Nature Reviews Cancer,2007,7(4):281-294.
[66]Shinya T,Gális I,Narisawa T,et al. Comprehensive analysis of glucan elicitor-regulated gene expression in tobacco BY-2 cells reveals a novel MYB transcription factor involved in the regulation of phenylpropanoid metabolism[J]. Plant and Cell Physiology,2007,48(10):1404-1413.
[67]Li C,Lv J,Zhao X,et al. TaCHP:a wheat zinc finger protein gene down-regulated by abscisic acid and salinity stress plays a positive role in stress tolerance[J]. Plant Physiology,2010,154(1):211-221.
[68]Lawton M A,Yamamoto R T,Hanks S K,et al. Molecular cloning of plant transcripts encoding protein kinase homologs[J]. Proceedings of the National Academy of Sciences of the United States of America,1989,86(9):3140-3144.
[69]Chandok M R,Sopory S K. ZmcPKC70,a protein kinase C-type enzyme from maize.Biochemical characterization,regulation by phorbol 12-myristate 13-acetate and its possible involvement in nitrate reductase gene expression[J]. Journal of Biological Chemistry,1998,273(30):19235-19242.
[70]Chandok M R,Sopory S K. Identification of phorbol myristate acetate stimulated kinase in Zea mays[J]. Journal of Plant Biochemistry & Biotechnology,1996,5(1):7-11.
[71]Nanmori T,Taguchi W,Kinugasa M,et al. Purification and characterization of protein kinase C from a higher plant,Brassica campestris L.[J]. Biochemical & Biophysical Research Communications,1994,203(1):311-318.
[72]Deswal R,Chowdhary G K,Sopory S K. Purification and characterization of a PMA-stimulated kinase and identification of PMA-induced phosphorylation of a polypeptide that is dephosphorylated by low temperature in Brassica juncea[J]. Biochemical & Biophysical Research Communications,2004,322(2):420-427.
[73]Dong W,Lv H J,Xia G M,et al. Does diacylglycerol serve as a signaling molecule in plants?[J]. Plant Signaling & Behavior,2012,7(4):472-475.
[74]Almena M,Mérida I. Shaping up the membrane:diacylglycerol coordinates spatial orientation of signaling[J]. Trends in Biochemical Sciences,2011,36(11):593-603.
[75]Munnik T. Phosphatidic acid:an emerging plant lipid second messenger[J]. Trends in Plant Science,2001,6(5):227-233.
[76]Lee Y,Assmann S M. Diacylglycerols induce both ion pumping in patch-clamped guard-cell protoplasts and opening of intact stomata[J]. Proceedings of the National Academy of Sciences of the United States of America,1991,88(6):2127-2131.
[77]Paradis S,Villasuso A L,Aguayo S S,et al. Arabidopsis thaliana lipid phosphate phosphatase 2 is involved in abscisic acid signalling in leaves[J]. Plant Physiology and Biochemistry,2011,49(3):357-362.
[78]Larsen P M,Chen T L L,Wolniak S M. Neomycin reversibly disrupts mitotic progression in stamen hair cells of Tradescantia[J]. Journal of Cell Science,1991,98(2):159-168.
[79]Arisz S A,Testerink C,Munnik T. Plant PA signaling via diacylglycerol kinase[J]. Biochimica et Biophysica Acta(BBA)-Molecular and Cell Biology of Lipids,2009,1791(9):869-875.
[80]Testerink C,Munnik T. Molecular,cellular,and physiological responses to phosphatidic acid formation in plants[J]. Journal of Experimental Botany,2011,62(7):2349-2361.
[81]Merida I,Avila-Flores A,Merino E. Diacylglycerol kinases:at the hub of cell signalling[J]. Biochemical Journal,2008,409(1):1-18.
[82]Vaultier M N,Cantrel C,Vergnolle C,et al. Desaturase mutants reveal that membrane rigidification acts as a cold perception mechanism upstream of the diacylglycerol kinase pathway in Arabidopsis cells[J]. FEBS Letters,2006,580(17):4218-4223.
[83]Goto K,Hozumi Y,Nakano T,et al. Lipid messenger,diacylglycerol,and its regulator,diacylglycerol kinase,in cells,organs,and animals:history and perspective[J]. Tohoku Journal of Experimental Medicine,2008,214(3):199-212.
[84]Toyoda K,Kawahara T,Ichinose Y,et al. Potentiation of phytoalexin accumulation in elicitor-treated epicotyls of pea (Pisum sativum) by a diacylglycerol kinase inhibitor[J]. Journal of Phytopathology,2000,148(11/12):633-636.
[85]Gómez-Merino F C,Arana-Ceballos F A,Trejo-Téllez L I,et al. Arabidopsis AtDGK7,the smallest member of plant diacylglycerol kinases(DGKs),displays unique biochemical features and saturates at low substrate concentration:the DGK inhibitor R59022 differentially affects AtDGK2 and AtDGK7 activity in vitro and alter plant growth and development[J]. Journal of Biological Chemistry,2005,280(41):34888-34899.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2018-06-11
基金项目:公益性行业(农业)科研专项(编号:201303073);国家自然科学基金(编号:31560467、31160407、31660589);2014年国家中组部“万人计划”青年拔尖人才项目(编号:组厅字[2015]48号);“八桂学者”工程专项经费(编号:[2016]21);广西创新驱动发展专项资金(编号:桂科AA17204038、桂科AA17204042);广西农业科学院博士后基金(编号:桂农科博2018029);广西特聘专家专项经费(编号:厅发[2016]21号);广西果蔬保鲜与深加工人才小开放课题(编号:2016XGDSHFW02);现代食品加工新技术研究岗位创新人才培养示范基地建设(编号:桂科AD17195088)。
作者简介:帅良(1986—),男,江西新干人,博士,讲师,主要从事农产品贮藏技术研究。Tel:(0771)3240232;E-mail:shuailiang1212@163.com。
通信作者:孙健,博士,研究员,主要从事农产品贮藏与加工技术研究。Tel:(0771)3240692;E-mail:jiansun@gxaas.net。
更新日期/Last Update: 2019-09-20