|本期目录/Table of Contents|

[1]王华华,张杨阳,刘文文.铝胁迫下一氧化氮对大豆根生长抑制的缓解作用[J].江苏农业科学,2019,47(18):122-125.
 Wang Huahua,et al.Mitigating effect of nitrogen oxide on growth inhibition of soybean roots under aluminum stress[J].Jiangsu Agricultural Sciences,2019,47(18):122-125.
点击复制

铝胁迫下一氧化氮对大豆根生长抑制的缓解作用(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第47卷
期数:
2019年第18期
页码:
122-125
栏目:
遗传育种与耕作栽培
出版日期:
2019-10-15

文章信息/Info

Title:
Mitigating effect of nitrogen oxide on growth inhibition of soybean roots under aluminum stress
作者:
王华华 张杨阳 刘文文
河南师范大学生命科学学院,河南新乡 453007
Author(s):
Wang Huahuaet al
关键词:
大豆根系生长一氧化氮信号分子铝毒害耐受性生长抑制缓解作用抗性品种筛选
Keywords:
-
分类号:
Q945.78;S565.101
DOI:
-
文献标志码:
A
摘要:
在酸性(pH值<5)土壤中,铝毒害是制约农作物生产的主要逆境因子。铝毒通过抑制根系生长,影响作物对水分和营养物质的吸收,最终导致农作物产量下降。以大豆为试验材料,探讨铝胁迫下外源一氧化氮(NO)对铝毒害的调节作用。结果显示,不同铝浓度处理可抑制大豆根的生长及根尖伸长区细胞的伸长,且可诱发根尖丙二醛(MDA)和H2O2含量的升高;进一步研究结果显示,NO处理可显著缓解铝抑制的根生长及根尖伸长区细胞的伸长,且降低根尖MDA、H2O2含量,提升根尖抗氧化酶活性。表明NO可能通过提高根尖抗氧化能力来缓解铝胁迫对根尖伸长区细胞伸长的抑制,从而改善根系的生长。
Abstract:
-

参考文献/References:

[1]Wang Y S,Yang Z M. Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L.[J]. Plant and Cell Physiology,2005,46(12):1915-1923.
[2]Mittler R. Oxidative stress,antioxidants and stress tolerance[J]. Trends in Plant Science,2002,7(9):405-410.
[3]Gupta K J,Fernie A R,Kaiser W M. On the origins of nitric oxide[J]. Trends in Plant Science,2011,16(3):160-168.
[4]Shi H T,Wang Y P,Cheng Z M,et al. Analysis of natural variation in bermudagrass (Cynodon dactylon) reveals physiological responses underlying drought tolerance[J]. PLoS One,2012,7(12):e53422.
[5]Wang H H,Li Y,Hou J J,et al. Nitrate reductase-mediated nitric oxide production alleviates Al-induced inhibition of root elongation by regulating the ascorbate-glutathione cycle in soybean roots[J]. Plant and Soil,2017,410(1/2):453-465.
[6]Laxalt A M,Beligni M V,Lamattina L. Nitric oxide preserves the level of chlorophyll in potato leaves infected by Phytophthora infestans[J]. European Journal of Plant Pathology,1997,103(7):643-651.
[7]Liu Y G,Wu R R,Wan Q,et al. Glucose-6-phosphate dehydrogenase plays a pivotal role in nitric oxide-involved defense against oxidative stress under salt stress in red kidney bean[J]. Plant and Cell Physiology,2007,48(3):511-522.
[8]Wang H H,Huang J J,Bi Y R. Nitrate reductase-dependent nitric oxide production is involved in aluminum tolerance in red kidney bean roots[J]. Plant Science,2010,179(3):281-288.
[9]Sharma S S,Dietz K J. The significance of amion acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress[J]. Journal of Experimental Botany,2006,57(4):711-726.
[10]Delhaize E,Ryan P R. Aluminum toxicity and tolerance in plants[J]. Plant Physiology,1995,107(2):315-321.
[11]Alamgir H M,Zakir H A K M,Kihara T,et al. Aluminum-induced lipid peroxidation and lignin deposition are associated with an increase in H2O2 generation in wheat seedlings[J]. Soil Science and Plant Nutrition,2005,51(2):223-230.
[12]Tamas L,Simonovicova M,Huttova J,et al. Aluminium stimulated hydrogen peroxide production of germinating barley seeds[J]. Environmental and Experimental Botany,2004,51(3):281-288.
[13]Dunand C,Crèvecoeur M,Penel C. Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development:possible interaction with peroxidases[J]. New Phytologist,2007,174(2):332-341.
[14]Yamamoto Y,Kobayashi Y,Rama Devi S,et al. Oxidative stress triggered by aluminum in plant roots[J]. Plant and Soil,2003,255(1):239-243.

相似文献/References:

[1]赵银月,耿智德,王铁军.云南省大豆地方种质资源的籽粒特征特性分析及评价[J].江苏农业科学,2013,41(04):62.
[2]朱倩,谢飒英,谢三刚,等.稀土LaCl3对大豆叶绿素含量及a/b值的影响[J].江苏农业科学,2013,41(06):81.
 Zhu Qian,et al.Effect of LaCl3 on chlorophyll content and the ratio of chlorophyll a to chlorophyll b in soybean[J].Jiangsu Agricultural Sciences,2013,41(18):81.
[3]王宗标,王幸,徐泽俊,等.植物保健剂对大豆产量及农艺性状的影响[J].江苏农业科学,2013,41(06):85.
 Wang Zongbiao,et al.Effects of plant health care agent on yield and agronomic traits of soybean[J].Jiangsu Agricultural Sciences,2013,41(18):85.
[4]徐明坤,胥义.冷冻干燥法制备快速制浆半成品大豆的工艺条件优化[J].江苏农业科学,2013,41(06):216.
 Xu Mingkun,et al.Optimization of technological conditions for preparation of semi-finished soybean products for quick soybean milk production by freeze-drying method[J].Jiangsu Agricultural Sciences,2013,41(18):216.
[5]陈新,袁星星,崔晓艳,等.江苏省大豆生产发展布局与未来发展方向[J].江苏农业科学,2013,41(08):5.
 Chen Xin,et al.Layout and future direction of soybean production development in Jiangsu Province[J].Jiangsu Agricultural Sciences,2013,41(18):5.
[6]李丽丽,郎敬,杨洪一,等.大豆根际解磷菌的鉴定[J].江苏农业科学,2014,42(08):363.
 Li Lili,et al.Identification of phosphate-solubilizing bacteria in rhizosphere of soybean[J].Jiangsu Agricultural Sciences,2014,42(18):363.
[7]孙彦坤,于越,任红玉,等.不同生育期喷施稀土镧和铈对大豆膜透性的Hormesis效应[J].江苏农业科学,2016,44(03):88.
 Sun Yankun,et al.Hormetic effect of lanthanum and cerium on soybean membrane permeability in different growth period[J].Jiangsu Agricultural Sciences,2016,44(18):88.
[8]马绍华,易福金,王学君.中国大豆进口市场势力综合分析[J].江苏农业科学,2016,44(03):527.
 Ma Shaohua,et al.Comprehensive analysis of Chinas soybean import market forces[J].Jiangsu Agricultural Sciences,2016,44(18):527.
[9]刘志良.丘陵红壤喷施钼肥对大豆产量及经济性状的影响[J].江苏农业科学,2013,41(12):77.
 Liu Zhiliang.Effects of molybdate fertilizer on yield and economic traits of soybean in red soil hilly area[J].Jiangsu Agricultural Sciences,2013,41(18):77.
[10]李凯,盖钧镒,邱家驯,等.大豆新品种南农39的选育及栽培技术[J].江苏农业科学,2013,41(12):110.
 Li Kai,et al.Breeding and cultivation techniques of new soybean cultivar “Nannong 39”[J].Jiangsu Agricultural Sciences,2013,41(18):110.

备注/Memo

备注/Memo:
收稿日期:2018-06-09
基金项目:国家自然科学基金(编号:U1704121);河南师范大学优秀青年科学基金(编号:14YQ003);河南师范大学博士启动课题(编号:11129)。
作者简介:王华华(1980—),男,湖北孝感人,博士,副教授,主要从事植物逆境生理研究。E-mail:hhwang04@163.com。
更新日期/Last Update: 2019-09-20