|本期目录/Table of Contents|

[1]李昕晏,崔杰,李俊良,等.miRNA调控植物抗逆机制的研究现状[J].江苏农业科学,2019,47(21):63-66.
 Li Xinyan,et al.Research status of miRNA regulating plant stress resistance mechanism[J].Jiangsu Agricultural Sciences,2019,47(21):63-66.
点击复制

miRNA调控植物抗逆机制的研究现状(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第47卷
期数:
2019年第21期
页码:
63-66
栏目:
专论与综述
出版日期:
2019-12-05

文章信息/Info

Title:
Research status of miRNA regulating plant stress resistance mechanism
作者:
李昕晏 崔杰 李俊良 王琮玉 罗成飞
哈尔滨工业大学,黑龙江哈尔滨 150001
Author(s):
Li Xinyanet al
关键词:
miRNA逆境胁迫转录因子结构基因靶基因
Keywords:
-
分类号:
S332.1;S184
DOI:
-
文献标志码:
A
摘要:
逆境胁迫会对植物的生长发育产生负面影响,在漫长的进化中,植物拥有了一套复杂的调控网络以应对不良环境,在这一套调控网络中miRNA起到了重要作用。本文对近几年关于miRNA及其靶基因调控作用的研究进行了总结,并对miRNA的形成过程和作用机制进行了概括,介绍了与抗逆相关的miRNA及其靶基因,包括以靶基因为抗逆相关转录因子的miRNA(miR160/miR167、miR159、miR156和miR164)以及以靶基因为抗逆相关结构基因的miRNA(miR398和miR395),可为利用基因工程手段增强植物的抗逆性提供更有效的改良途径。
Abstract:
-

参考文献/References:

[1]Lee R C,Feinbaum R L,Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell,1993,75(5):843-854.
[2]Kurihara Y,Watanabe Y. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions[J]. Proceedings of the National Academy of Sciences,2004,101(34):12753-12758.
[3]Hck J,Meister G. The Argonaute protein family[J]. Genome Biology,2008,9(2):210.
[4]Kumar R. Role of microRNAs in biotic and abiotic stress responses in crop plants[J]. Applied Biochemistry & Biotechnology,2014,174(1):93-115.
[5]Wang J W,Czech B,Weigel D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana[J]. Cell,2009,138(4):738-749.
[6]Palatnik J F,Wollmann H,Schommer C,et al. Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319[J]. Developmental Cell,2007,13(1):115-125.
[7]Rodriguez R E,Mecchia M A,Debemardi J M,et al. Control of cell proliferation in Arabidopsis thaliana by microRNA miR396[J]. Development,2010,137(1):103-112.
[8]Imagawa M,Sakaue R,Tanabe A,et al. Two nuclear localization signals are required for nuclear translocation of nuclear factor 1-A[J]. FEBS Letters,2000,484(2):118-124.
[9]Huang J,Li Z Y,Zhao D Z. Deregulation of the OsmiR160 target gene OsARF18 causes growth and developmental defects with an alteration of auxin signaling in rice[J]. Scientific Reports,2016,6:29938.

[10]Glazińska P,Wojciechowski W,Wilmowicz E,et al. The involvement of InMIR167 in the regulation of expression of its target gene InARF8,and their participation in the vegetative and generative development of Ipomoea nil plants[J]. Journal of Plant Physiology,2014,171(3/4):225-234.

[11]Iglesias M J,Terrile M C,Windels D,et al. MiR393 regulation of auxin signaling and redox-related components during acclimation to salinity in Arabidopsis[J]. PLoS One,2014,9(9):e107678.

[12]Lin Y L,Lai Z X,Tian Q L,et al. Endogenous target mimics down-regulate miR160 mediation of ARF10,-16,and-17<.i> cleavage during somatic embryogenesis in Dimocarpus longan Lour[J]. Frontiers in Plant Science,2015,6:956.

[13]Sunkar R,Li Y F,Jagadeeswaran G. Functions of microRNAs in plant stress responses[J]. Trends in Plant Science,2012,17(4):196-203.

[14]Sun G L. MicroRNAs and their diverse functions in plants[J]. Plant Molecular Biology,2012,80(1):17-36.

[15]Gupta O P,Meena N L,Sharma I,et al. Differential regulation of microRNAs in response to osmotic,salt and cold stresses in wheat[J]. Molecular Biology Reports,2014,41(7):4623-4629.

[16]Lopez-Molina L,Mongrand S,McLachlin D T,et al. ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination[J]. Plant Journal,2002,32(3):317-328.

[17]Matthews C,Arshad M,Hannoufa A. Alfalfa response to heat stress is modulated by microRNA156[J]. Physiologia Plantarum,2018,165(4):830-842.

[18]Arshad M,Gruber M Y,Wall K,et al. An insight into microRNA156 role in salinity stress responses of alfalfa[J]. Frontiers in Plant Science,2017,8:356.

[19]Arshad M,Feyissa B A,Amyot L,et al. MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13[J]. Plant Science,2017,258:122-136.
[20]Le D T,Nishiyama R,Watanabe Y,et al. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress[J]. DNA Research,2011,18(4):263-276.
[21]Huang H,Wang Y,Wang S L,et al. Transcriptome-wide survey and expression analysis of stress-responsive NAC genes in Chrysanthemum lavandulifolium[J]. Plant Science,2012,193-194:18-27.
[22]Fang Y,Xie K,Xiong L. Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice[J]. Journal of Experimental Botany,2014,65(8):2119-2135.
[23]Guo H S,Xie Q,Fei J F,et al. MicroRNA164 directs NAC1 mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development[J]. Plant Cell,2005,17:1376-1386.
[24]Nakashima K,Takasaki H,Mizoi J,et al. NAC transcription factors in plant abiotic stress responses[J]. Biochimica et Biophysica Acta(Gene Regulatory Mechanisms),2012,1819(2):97-103.
[25]Lu X,Dun H,Lian C L,et al. The role of peu-miR164 and its target PeNAC genes in response to abiotic stress in Populus euphratica[J]. Plant Physiology and Biochemistry,2017,115:418-438.
[26]孙宗艳. 盐/干旱胁迫下甜菜幼苗中miR160/164及其靶基因的表达与分析[D]. 哈尔滨:哈尔滨工业大学,2017.
[27]Sunkar R,Kapoor A,Zhu J K. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance[J]. Plant Cell,2006,18(8):2051-2065.
[28]Guan Q M,Lu X Y,Zeng H T,et al. Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis[J]. Plant Journal,2013,74(5):840-851.
[29]Kawashima C G,Yoshimoto N,Maruyama-Nakashita A,et al. Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types[J]. Plant Journal,2009,57(2):313-321.
[30]Liang G,Yang F X,Yu D Q. MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana[J]. Plant Journal,2010,62(6):1046-1057.
[31]Ai Q,Liang G,Zhang H M,et al. Control of sulfate concentration by miR395-targeted APS genes in Arabidopsis thaliana[J]. Plant Diversity,2016,38(2):92-100.
[32]Zhang L W,Song J B,Shu X X,et al. miR395 is involved in detoxification of cadmium in Brassica napus[J]. Journal of Hazardous Materials,2013,250-251:204-211.
[33]李晓刚,李慧,杨青松,等. 杜梨bHLH转录因子家族两成员的序列特征及对非生物胁迫的转录响应[J]. 江苏农业科学,2017,45(22):40-45.

相似文献/References:

[1]王贵平,王金政.苹果抗逆性研究进展与鉴定方法[J].江苏农业科学,2013,41(07):151.
 Wang Guiping,et al.Research progress and identification method of stress resistance of apple trees[J].Jiangsu Agricultural Sciences,2013,41(21):151.
[2]牛伟博.DREB转录因子及其在植物抗逆育种中的应用进展[J].江苏农业科学,2014,42(08):17.
 Niu Weibo.Progress on DREB transcription factor and its application in stress-resistance breeding of plants[J].Jiangsu Agricultural Sciences,2014,42(21):17.
[3]张美德,艾伦强,卢超,等.硒对镉胁迫下白术幼苗生理特性的影响[J].江苏农业科学,2015,43(10):306.
 Zhang Meide,et al.Effect of selenium on physiological characteristics of Atractylodes macrocephala Koidz. seedlings under cadmium stress[J].Jiangsu Agricultural Sciences,2015,43(21):306.
[4]崔东亚,杨美玲.降解组测序与剪切位点分析研究进展[J].江苏农业科学,2014,42(07):56.
 Cui Dongya,et al.Research progress of degradome sequencing and splice site analysis[J].Jiangsu Agricultural Sciences,2014,42(21):56.
[5]陶波,刘洋,李向勇,等.大豆中不同除草剂作用靶标酶的miRNA前体克隆[J].江苏农业科学,2016,44(09):24.
 Tao Bo,et al.Cloning of miRNA precursors for different herbicides in soybean[J].Jiangsu Agricultural Sciences,2016,44(21):24.
[6]钱荷英,李刚,何庆玲,等.蓖麻蚕核型多角体病毒的miRNAs生物信息学预测[J].江苏农业科学,2016,44(10):53.
 Qian Heying,et al.Bioinformatics prediction of miRNAs in PhcyNPV[J].Jiangsu Agricultural Sciences,2016,44(21):53.
[7]吴巧娟,徐剑文,刘剑光,等.棉花应答逆境胁迫的蛋白质组学研究进展[J].江苏农业科学,2016,44(12):22.
 Wu Qiaojuan,et al.Research progress of proteomics in response to stress in cotton[J].Jiangsu Agricultural Sciences,2016,44(21):22.
[8]吴俊静,乔木,武华玉,等.调控CD163基因表达的miRNA鉴定及其在PRRSV感染中的作用分析[J].江苏农业科学,2017,45(13):16.
 Wu Junjing,et al.MiRNA identification of CD163 gene expression and its role in PRRSV infection[J].Jiangsu Agricultural Sciences,2017,45(21):16.
[9]蔡锦顺,关立增,娄鞍钢,等.猪乳外胞体总miRNAUnit对猪繁殖与呼吸综合征病毒复制抑制的研究[J].江苏农业科学,2018,46(05):144.
 Cai Jinshun,et al.Study on total miRNA in porcine milk exosome inhibiting porcine reproductive and respiratory syndrome virus replication[J].Jiangsu Agricultural Sciences,2018,46(21):144.
[10]李丽,孙健,何雪梅,等.逆境胁迫下植物磷脂酶D的生理功能和作用机制综述[J].江苏农业科学,2018,46(08):1.
 Li Li,et al.Physiological function and mechanism of phospholipase D in plants under stress: a review[J].Jiangsu Agricultural Sciences,2018,46(21):1.

备注/Memo

备注/Memo:
收稿日期:2018-09-28
基金项目:国家自然科学基金(编号:31571731)。
作者简介:李昕晏(1995—),女,湖南长沙人,硕士研究生,主要从事植物抗逆分子生物学研究。E-mail:496349958@qq.com。
通信作者:崔杰,博士,副教授,主要从事植物抗逆分子生物学研究。E-mail:cuijie2006@163.com。
更新日期/Last Update: 2019-11-05