|本期目录/Table of Contents|

[1]苏瑞东.无人机在现代农业中的应用综述[J].江苏农业科学,2019,47(21):75-79.
 Su Ruidong.Application of UAVs in modern agriculture: a review[J].Jiangsu Agricultural Sciences,2019,47(21):75-79.
点击复制

无人机在现代农业中的应用综述(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第47卷
期数:
2019年第21期
页码:
75-79
栏目:
专论与综述
出版日期:
2019-12-05

文章信息/Info

Title:
Application of UAVs in modern agriculture: a review
作者:
苏瑞东
山西省水利水电科学研究院,山西太原 030000
Author(s):
Su Ruidong
关键词:
无人机遥感现代农业传感器
Keywords:
-
分类号:
S252
DOI:
-
文献标志码:
A
摘要:
对无人机及其在农业应用中搭载传感器的类型进行简要说明,并对基于无人机遥感的农田土壤分析及墒情测定、作物面积测算及快速分类、作物施肥及其管理进行深入剖析,指出无人机在各研究领域的关键技术,对推动现代农业的发展具有划时代的意义。最后提出研发续航时间长、载荷能力强、稳定性高、分辨率高的农用无人机以及相配套的遥感数据后处理方法,以有力推动无人机在现代农业上的应用。
Abstract:
-

参考文献/References:

[1]何盛明. 财经大辞典[M]. 北京:中国财政经济出版社,1990.
[2]Mulla D J.Twenty five years of remote sensing in precision agriculture:key advances and remaining knowledge gaps[J]. Biosystems Engineering,2013,114(4):358-371.
[3]Quiquerez A,Chevigny E,Allemand P,et al.Assessing the impact of soil surface characteristics on vineyard erosion from very high spatial resolution aerial images[J]. Catena,2013,116:163-172.
[4]马兴. 喷洒农药的无人驾驶小飞机[J]. 新农业,2015(1):25-26.
[5]王虹. 美国通用航空发展现状[J]中国民用航空,2003(8):45-47.
[6]吴志洋. 单旋翼植保无人机技术浅析[J]中国植保导刊,2014(增刊1):40-41,18.
[7]吴小伟,茹煜,周宏平. 无人机喷洒技术的研究[J]. 农机化研究,2010,32(7):224- 228.
[8]李林颖. 农用无人机初露头角未来可期[N]. 中国农机化导报,2013-11-04(6).
[9]蒙继华,吴炳方,李强子,等. 农田农情参数遥感监测进展及应用展望[J]. 遥感信息,2010(3):122 -128.

[10]袁玉敏. 农业植保无人机高精度定位系统研究与设计——基于GPS和GPRS[J]. 农机化研究,2016,38(12):227-231.

[11]张新星. 农用无人机智能植保系统设计[J]. 时代农机,2017,44(3):85-86.

[12]范庆妮. 小型无人直升机农药雾化系统的研究[D]南京:南京林业大学,2011.

[13]茹煜,金兰,周宏平,等. 航空施药旋转液力雾化喷头性能试验[J]. 农业工程学报,2014,30(3):50-55.

[14]茹煜. 农药航空静电喷雾系统及其应用研究[D]. 南京:南京林业大学,2009.

[15]茹煜,贾志成,范庆妮,等. 范庆妮等. 无人直升机远程喷雾控制系统[J]. 农业机械学报,2012,43(6):47-52.

[16]徐兴,徐胜,刘永鑫,等. 小型无人机机载农药变量喷洒系统设计[J]. 广东农业科学,2014(9):207-210.

[17]史万萍,王熙,王新忠. 基于GPS和GIS的变量喷药技术研究[J]. 农机化研究,2007(2):19-21.

[18]Xue X Y,Tu K,Qin W C,et al. Drift and deposition of ultra-low altitude and low volume application in paddy field[J]. International Journal of Agricultural and Biological Engineering,2014,7(4):23-28.

[19]Qin W C,Xue X Y,Cui L F,et al. Optimization and test for spraying parameters of cotton defoliant sprayer[J]. International Journal of Agricultural and Biological Engineering,2016,9(4):63-72.
[20]王昌陵,何雄奎,王潇楠,等. 无人植保机施药雾滴空间质量平衡测试方法[J]. 农业工程学报,2016,32(11):54-61.
[21]王昌陵,何雄奎,王潇楠,等. 基于空间质量平衡法的植保无人机施药雾滴沉积分布特性测试[J]. 农业工程学报,2016,32(24):89-97.
[22]王潇楠,何雄奎,王昌陵,等. 油动单旋翼植保无人机雾滴飘移分布特性[J]. 农业工程学报,2017,33(1):117-123.
[23]邱白晶,王立伟,蔡东林,等. 无人直升机飞行高度与速度对喷雾沉积分布的影响[J]. 农业工程学报,2013,29(24):25-32.
[24]秦维彩,薛新宇,周立新,等. 无人直升机喷雾参数对玉米冠层雾滴沉积分布的影响[J]. 农业工程学报,2014,30(5):50-56.
[25]陈盛德,兰玉彬,李继宇,等. 小型无人直升机喷雾参数对杂交水稻冠层雾滴沉积分布的影响[J]. 农业工程学报,2016,32(17):40-46.
[26]李冰,刘镕源,刘素红,等. 基于低空无人机遥感的冬小麦覆盖度变化监测[J]. 农业工程学报,2012,28(13):160-165.
[27]王玉鹏. 无人机低空遥感影像的应用研究[D]. 焦作:河南理工大学,2011.
[28]Huang Y,Lan Y,Ge Y,et al. Spatial modeling and variability analysis for modeling and prediction of soil and crop canopy coverage using multispectral imagery from an airborne remote sensing system[J]. Transactions of the ASABE,2010,53(4):1321-1329.
[29]Huang Y B,Thomson S J,Lan Y B,et al. Multispectral imaging systems for airborne remote sensing to support agricultural production management[J]. International Journal of Agricultural and Biological Engineering,2010,3(1):50-62.
[30]Huang Y,Lan Y,Hoffmann W C. Use of airborne multi-spectral imagery in pest management systems[J]. Agricultural Engineering International,2008,10:1-14.
[31]Chosa T,Miyagawa K,Tamura S,et al. Monitoring rice growth over a production region using an unmanned aerial vehicle:preliminary trial for establishing a regional rice strain[J]. IFAC Proceedings Volumes,2010,43(26):178-183.
[32]Hunt J,Hively W D,Fujikawa S J,et al. Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring[J]. Remote Sensing,2010,2(1):290-305.
[33]Hunt E R,Cavigelli M,Daughtry C S T,et al. Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status[J]. Precision Agriculture,2005,6(4):359-378.
[34]石媛媛. 基于数字图像的水稻氮磷钾营养诊断与建模研究[D]. 杭州:浙江大学,2011.
[35]Swain K C,Thomson S J,Jayasuriya H P W. Adoption of an unmanned helicopter for low-altitude remote sensing to estimate yield and total biomass of a rice crop[J]. Transactions of the ASABE,2010,53(1):21-27.
[36]Lelong C C D,Burger P,Jubelin G A,et al. Assessment of unmanned aerial vehicles imagery for quantitative monitoring of wheat crop in small plots[J]. Sensors,2008,8(5):3557-3585.
[37]Sugiura R,Noguchi N,Ishii K. Remote-sensing technology for vegetation monitoring using an unmanned helicopter[J]. Biosystems engineering,2005,90(4):369-379.
[38]Sugiura R,Fukagawa T,Noguchi N,et al. Field information system using an agricultural helicopter towards precision farming[C]. IEEE ASME International Conference on Advanced Intelligent Mechatronics,Japan,kobe,2003.
[39]Sullivan D G,Fulton J P,Shaw J N,et al. Evaluating the sensitivity of an unmanned thermal infrared aerial system to detect water stress in a cotton canopy[J]. Transactions of the ASABE,2007,50(6):1955-1962.
[40]Noguchi N. 日本机器人耕作体系与遥感技术应用[J]. 农机科技推广,2010(12):16-17.
[41]Vega F A,Ramfrez F C,Saiz M P,et al.Multi-temporal imaging using an unmanned aerial vehicle for monitoring a sunflower crop[J]. Biosystems Engineering,2015,132:19-27.
[42]Armstrong J Q,Dirks R D,Gibson K D.The use of early season multispectral images for weed detection in corn[J]. Weed Technology,2007,21(4):857-862.
[43]Torres-Sanchez J.Configuration and specifications of an Unmanned Aerial Vehicle (UAV) for early site specific weed management[J]. PLoS One,2013,8(3):e58210.
[44]Zarco-Tejada P J,Gonzalez-Dugo V,Berni J A J.Fluorescence,temperature and narrow-band indices acquired form a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera[J]. Remote Sensing of Environment,2012,117:322-337.
[45]Gago J,Douthe C,Coopman R E,et al.UAVs challenge to assess water stress for sustainable agriculture[J]. Agricultural Water Management,2015,153:9-19.
[46]乔红波,周益林,白由路,等. 地面高光谱和低空遥感监测小麦白粉病初探[J]. 植物保护学报,2006,33(4):341-344.
[47]乔红波. 麦蚜和白粉病遥感监测技术研究[D]. 北京:中国农业科学院,2007.
[48]祝锦霞,陈祝炉,石媛媛,等. 基于无人机和地面数字影像的水稻氮素营养诊断研究[J]. 浙江大学学报(农业与生命科学版),2010,36(1):78-83.
[49]李冰,刘镕源,刘素红,等. 基于低空无人机遥感的冬小麦覆盖度变化监测[J]. 农业工程学报,2012,28(13):160-165.
[50]高林,杨贵军,王宝山,等. 基于无人机遥感影像的大豆叶面积指数反演研究[J]. 中国生态农业学报,2015,23(7):868-876.
[51]胡勇,张孝成,马泽忠,等. 无人机遥感影像中农村房屋信息快速提取[J]. 国土资源遥感,2016,28(3):96-101.
[52]李宗南,陈仲新,王利民,等. 基于小型无人机遥感的玉米倒伏面积提取[J]. 农业工程学报,2014,30(19):207-213.
[53]韩文霆,李广,苑梦婵,等. 基于无人机遥感技术的玉米种植信息提取方法研究[J]. 农业机械学报,2017,48(1):139-147.
[54]孙佩军,张锦水,潘耀忠,等. 基于无人机样方事后分层的作物面积估算[J]. 中国农业资源与区划,2016,37(2):1-10.
[55]Shen K J,Li W F,Pei Z Y,et al.Crop area estimation form UAV transect and MSR image data using spatial sampling method[J]. Procedia Environ-mental Sciences,2015,26:95-100.
[56]田振坤,傅莺莺,刘素红,等. 基于无人机低空遥感的农作物快速分类方法[J]. 农业工程学报,2013,29(7):109-116.
[57]郭鹏,武法东,戴建国,等. 基于无人机可见光影像的农田作物分类方法比较[J]. 农业工程学报,2017,33(13):112-119.

相似文献/References:

[1]陈鹤群,雷少刚.TerraSAR-X土壤水分反演研究进展[J].江苏农业科学,2013,41(04):327.
[2]王丽爱,谭昌伟,马昌,等.农情信息遥感监测预报模型构建算法研究进展[J].江苏农业科学,2013,41(11):1.
 Wang Liai,et al.Research progress of remote sensing forecast modeling algorithms on crop information[J].Jiangsu Agricultural Sciences,2013,41(21):1.
[3]李章成,李源洪,魏来,等.基于SPOT5影像分析植被指数与水稻叶面积指数和产量的相关性[J].江苏农业科学,2014,42(01):284.
 Li Zhangcheng,et al.Study on correlation between vegetation index and leaf area index and yield of rice based on SPOT5 image analysis[J].Jiangsu Agricultural Sciences,2014,42(21):284.
[4]康婷婷,居为民,李秉柏.水稻叶面积指数遥感反演方法对比分析[J].江苏农业科学,2015,43(05):366.
 Kang Tingting,et al.Contrastive analysis of remote sensing inversion method of rice leaf area index[J].Jiangsu Agricultural Sciences,2015,43(21):366.
[5]马驰.松辽平原土地盐碱化动态监测与遥感分析[J].江苏农业科学,2016,44(07):495.
 Ma Chi.Dynamic monitoring and remote sensing analysis of soil salinization in Songliao Plain[J].Jiangsu Agricultural Sciences,2016,44(21):495.
[6]田苗,童杨辉.TRMM卫星降水数据在江苏省的适用性分析[J].江苏农业科学,2016,44(12):440.
 Tian Miao,et al.Applicability analysis of TRMM precipitation data in Jiangsu Province[J].Jiangsu Agricultural Sciences,2016,44(21):440.
[7]刘远,周买春.遥感反演植被叶面积指数的不确定性来源综述[J].江苏农业科学,2017,45(12):12.
 Liu Yuan,et al.Uncertain sources of remote sensing inversion of vegetation leaf area index:an overview[J].Jiangsu Agricultural Sciences,2017,45(21):12.
[8]苏腾飞,刘全明,苏秀川.基于多种植被指数时间序列与机器学习的作物遥感分类研究[J].江苏农业科学,2017,45(16):219.
 Su Tengfei,et al.Study on crop remote sensing classification based on multiple vegetation index time series and machine learning[J].Jiangsu Agricultural Sciences,2017,45(21):219.
[9]李岩,尚士友,王晓娟,等.西乌珠穆沁典型草原植被盖度空间异质性研究[J].江苏农业科学,2017,45(22):283.
 Li Yan,et al.Study on spatial heterogeneity of vegetation coverage of Wuzhumuqin typical steppe[J].Jiangsu Agricultural Sciences,2017,45(21):283.
[10]孙世泽,汪传建,刘伟,等.无人机多光谱草地估产中的最佳波段组合研究[J].江苏农业科学,2018,46(04):190.
 Sun Shize,et al.Study on optimum band combination in estimating biomass of grassland based on UAV multispectral images[J].Jiangsu Agricultural Sciences,2018,46(21):190.

备注/Memo

备注/Memo:
收稿日期:2018-10-24
基金项目:山西水利信息化规划(编号:晋水财务[2017]433)。
作者简介:苏瑞东(1988—),男,内蒙古丰镇人,硕士,主要从事无人机应用及水利信息化研究。E-mail:surd168@163.com。
更新日期/Last Update: 2019-11-05